Dyslipidaemia is characterized by increased blood levels of total or LDL cholesterol and triglycerides, or decreased HDL cholesterol levels, and is a risk factor for cardiovascular disease. Dyslipidaemia has a high worldwide prevalence, and many patients are turning to alternatives to pharmacotherapy to manage their lipid levels. Lifestyle modification should be emphasized in all patients to reduce cardiovascular risk and can be initiated before pharmacotherapy in primary prevention of cardiovascular disease. Many functional foods and natural health products have been investigated for potential lipid-lowering properties. Those with good evidence for a biochemical effect on plasma lipid levels include soy protein, green tea, plant sterols, probiotic yogurt, marine-derived omega-3 fatty acids and red yeast rice. Other products such as seaweed, berberine, hawthorn and garlic might confer some limited benefit in certain patient groups. Although none of these products can reduce lipid levels to the same extent as statins, most are safe to use in addition to other lifestyle modifications and pharmacotherapy. Natural health products marketed at individuals with dyslipidaemia, such as policosanol, guggulsterone and resveratrol, have minimal definitive evidence of a biochemical benefit. Additional research is required in this field, which should include large, high-quality randomized controlled trials with long follow-up periods to investigate associations with cardiovascular end points.
The intestinal L cell is the principal source of glucagon-like peptide-1 (GLP-1), a major determinant of insulin release. Because GLP-1 secretion is regulated in a circadian manner in rodents, we investigated whether the activity of the human L cell is also time sensitive. Rhythmic fluctuations in the mRNA levels of canonical clock genes were found in the human NCI-H716 L cell model, which also showed a time-dependent pattern in their response to well-established secretagogues. A diurnal variation in GLP-1 responses to identical meals (850 kcal), served 12 h apart in the normal dark (2300) and light (1100) periods, was also observed in male volunteers maintained under standard sleep and light conditions. These findings suggest the existence of a daily pattern of activity in the human L cell. Moreover, we separately tested the short-term effects of sleep deprivation and nocturnal light exposure on basal and postprandial GLP-1, insulin, and glucose levels in the same volunteers. Sleep deprivation with nocturnal light exposure disrupted the melatonin and cortisol profiles and increased insulin resistance. Moreover, it also induced profound derangements in GLP-1 and insulin responses such that postprandial GLP-1 and insulin levels were markedly elevated and the normal variation in GLP-1 responses was abrogated. These alterations were not observed in sleep-deprived participants maintained under dark conditions, indicating a direct effect of light on the mechanisms that regulate glucose homeostasis. Accordingly, the metabolic abnormalities known to occur in shift workers may be related to the effects of irregular light-dark cycles on these glucoregulatory pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.