The envelope glycoproteins (Env) represent a critical component of a successful antibody-mediated human immunodeficiency virus type 1 (HIV-1) vaccine. However, immunization with soluble Env was reported to induce short-lived antibody responses, suggesting that Env has unusual immunogenic properties. Here, we directly compared the magnitude and durability of B-cell responses induced by HIV-1 Env and an unrelated soluble viral protein, influenza virus hemagglutinin (HA), in simultaneously inoculated macaques. We demonstrate robust peak responses followed by rapid contraction of circulating antibody and memory B cells for both antigens, suggesting that short-lived responses are not unique to HIV-1 Env but may be a common feature of soluble protein vaccines.
Protein-based vaccines require adjuvants to achieve optimal responses. Toll-like receptor (TLR) 9 agonists were previously shown to improve responses to protein-based vaccines, such as the Hepatitis B virus vaccine formulated in alum. Here, we used CpG-C together with the clinically relevant saponin-based adjuvant AbISCO-100/Matrix-M (AbISCO), to assess if TLR9 co-stimulation would quantitatively or qualitatively modulate HIV-1 envelope glycoprotein (Env)-specific B and T cell responses in rhesus macaques. The macaques were inoculated with soluble Env trimers in AbISCO, with or without the addition of CpG-C, using an interval similar to the Hepatitis B virus vaccine. Following a comprehensive evaluation of antigen-specific responses in multiple immune compartments, we show that the Env-specific circulating IgG, memory B cells and plasma cells displayed similar kinetics and magnitude in the presence or absence of CpG-C and that there was no apparent difference between the two groups in the elicited HIV-1 neutralizing antibody titers or antigen-specific CD4+ T cell responses. Importantly, the control of SHIV viremia was significantly improved in animals from both Env-immunized groups relative to adjuvant alone controls, demonstrating the potential of AbISCO to act as a stand-alone adjuvant for Env-based vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.