We report here that the E7 oncoprotein encoded by the oncogenic human papillomavirus (HPV) type 16 binds to the glycolytic enzyme type M 2 pyruvate kinase (M2-PK). M2-PK occurs in a tetrameric form with a high affinity to its substrate phosphoenolpyruvate and a dimeric form with a low affinity to phosphoenolpyruvate, and the transition between both conformations regulates the glycolytic f lux in tumor cells. The glycolytic intermediate fructose 1,6-bisphosphate induces the reassociation of the dimeric to the tetrameric form of M2-PK. The expression of E7 in an experimental cell line shifts the equilibrium to the dimeric state despite a significant increase in the fructose 1,6-bisphosphate levels. Investigations of HPV-16 E7 mutants and the nononcogenic HPV-11 subtype suggest that the interaction of HPV-16 E7 with M2-PK may be linked to the transforming potential of the viral oncoprotein.Unicellular organisms have a variety of sensing mechanisms to adapt the cell proliferation rate to variations in their environmental nutrient supply. Several gene products, like the ras or cdc kinase proteins, which are involved in nutrient sensing in yeast (1, 2), are conserved during the evolution of multicellular organisms, and in mammals, these gene products often are altered in tumors. Despite our knowledge about the protein machinery regulating cell proliferation increasing tremendously over the recent years, we are still at the beginning to understand how nutrients contribute to proliferation control in multicellular organisms. There is, however, quite good evidence that phosphometabolites derived from both glycolysis (for recent review, see ref.3) and the pentose phosphate pathway (ref. 4 and references therein) provide some of the signals linking metabolic conditions to cell proliferation. The glycolytic phosphometabolites, which are necessary for the biosynthesis of nucleic acids, phospholipids, and complex carbohydrates, are up-regulated in the G 1 phase of the cell cycle (for recent review, see
Human papillomaviruses (HPVs) are the causative agents of a number of human cancers, of which cervical cancer is the most important. This occurs following persistent infection with a limited number of viral subtypes and is characterized by continued expression of the viral E6 and E7 oncoproteins. A unique characteristic of the cancercausing HPV types is the presence of a PDZ recognition motif on the carboxy terminus of the E6 oncoprotein. Through this motif, E6 directs the proteasome-mediated degradation of cellular proteins involved in the regulation of cell polarity and in cell proliferation control. These include components of the Scrib and Par polarity complexes, as well as a number of other PDZ domaincontaining substrates. Thus, PVs are now providing novel insights into the functioning of many of these cellular proteins, and into which of these functions, in particular, are relevant for maintaining normal cellular homeostasis. In this review, we discuss the biological consequences of papillomaviral targeting of these cell polarity regulators, both with respect to the viral life cycle and, most importantly, to the development of HPV-induced malignancy.
Protein kinase B (PKB) or Akt is one of several second messenger kinases that are activated by cell attachment and growth factor signaling, and that transmit signals to the cell nucleus to inhibit apoptosis and thereby increase cell survival during proliferation. Other viral proteins target this pathway by increasing PKB/Akt phosphorylation, and this pathway has been implicated in the transformation of human keratinocytes by HPV E6 and E7, together with activated notch 1. Here, we examine how HPV E7 expression affects the phosphorylation of PKB. We show that HPV-16 E7 increases the level of phosphorylation of PKB in response to serum stimulation, by a mechanism independent of downregulation of PTEN phosphatase, a known inhibitor of the PI3K (PI3 kinase) pathway. The use of specific antibodies shows that some proportion of PKB/Akt that is phosphorylated both on threonine 308 and serine 473 is maintained in the presence of E7 in a PI3 kinase-independent manner, and is activated for phosphorylation of BAD, a known downstream target of PKB/Akt. Use of E7 mutants has ruled out both an inhibition of IGFBP-3, a known E7 target and PKB/Akt modulator, and the interaction of E7 with cellular pocket proteins, as being the mechanism for the PKB/Akt stimulation. PKB binds PP2A and is a known substrate of PP2A. Here, we show that HPV E7 also binds to both the 35 kDa catalytic and 65 kDa structural subunits of PP2A, an interaction that sequesters these subunits and inhibits their interaction with PKB, thereby maintaining PKB/Akt signaling by inhibiting its dephosphorylation.
The E6 proteins of the high-risk Human papillomaviruses (HPV) types have a well-documented ability to target certain cellular proteins for ubiquitin-mediated degradation via the proteasome. Previous studies have shown that E6 proteins interact differently with different target proteins, and that the viral proteins, depending upon the target, may recruit diverse cellular ubiquitin-protein ligases. In this study, we have examined the abilities of E6 proteins from HPV-16 and HPV-18 to interact with and induce the degradation of two PDZ domain-containing targets, Dlg and hScrib. We have also mapped the binding site of E6 on hScrib and shown that the interaction of E6 with hScrib is distinct from its interactions with other PDZ domain-containing targets. This is reflected in the efficiency with which the two viral E6 proteins can inhibit hScrib's suppression of cell transformation.Dlg and hScrib have complementary activities in the control of epithelial cell polarity and the fact that both are targeted by high-risk HPV E6 proteins underlines their importance. Our finding that they are each targeted differently by HPV-16 and HPV-18 E6s suggests that the two viruses are subjected to somewhat different constraints and provides a possible explanation for the apparent redundancy in targeting both parts of this important control mechanism.
The E6 proteins originating from the tumour-associated Human Papillomavirus (HPV) types 16 and 18 have been shown to bind to and target the tumour suppressor protein, p53, for ubiquitin-mediated degradation. However, in cell lines derived from cervical neoplasias, the predominant early region transcripts are spliced and encode truncated forms of E6, termed E6*. We report here that HPV-18 E6* protein will interact both with the full-length E6 proteins from HPV-16 and HPV-18 and also with E6-AP, and subsequently blocks the association of full length E6 protein with p53. We also show that, as a result of this block, E6* can inhibit E6-mediated degradation of p53 both in vitro and in vivo. The biological consequences of this are increased transcriptional activity on p53-responsive promoters and an inhibition of cell growth in cells transfected with E6*. This is the ®rst report of a potential biological function for this polypeptide and may represent a means by which HPV is able to modulate the activity of the full-length E6 protein with respect to p53 during viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.