Paracetamol is the most commonly used analgesic in older people, and is mainly dosed according to empirical dosing guidelines. However, the pharmacokinetics and thereby the effects of paracetamol can be influenced by physiological changes occurring with ageing. To investigate the steps needed to reach more evidence-based paracetamol dosing regimens in older people, we applied the concepts used in the paediatric study decision tree. A search was performed to retrieve studies on paracetamol pharmacokinetics and safety in older people (> 60 years) or studies that performed a (sub) analysis of pharmacokinetics and/or safety in older people. Of 6088 articles identified, 259 articles were retained after title and abstract screening. Further abstract and full-text screening identified 27 studies, of which 20 described pharmacokinetics and seven safety. These studies revealed no changes in absorption with ageing. A decreased (3.9–22.9%) volume of distribution (Vd) in robust older subjects and a further decreased Vd (20.3%) in frail older compared with younger subjects was apparent. Like Vd, age and frailty decreased paracetamol clearance (29–45.7 and 37.5%) compared with younger subjects. Due to limited and heterogeneous evidence, it was difficult to draw firm and meaningful conclusions on changed risk for paracetamol safety in older people. This review is a first step towards bridging knowledge gaps to move to evidence-based paracetamol dosing in older subjects. Remaining knowledge gaps are safety when using therapeutic dosages, pharmacokinetics changes in frail older people, and to what extent changes in paracetamol pharmacokinetics should lead to a change in dosage in frail and robust older people.Electronic supplementary materialThe online version of this article (10.1007/s40266-018-0559-x) contains supplementary material, which is available to authorized users.
Background and Objective Little is known about acetaminophen (paracetamol) pharmacokinetics during pregnancy. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict acetaminophen pharmacokinetics throughout pregnancy. Methods PBPK models for acetaminophen and its metabolites were developed in non-pregnant and pregnant women. Physiological and enzymatic changes in pregnant women expected to impact acetaminophen pharmacokinetics were considered. Models were evaluated using goodness-of-fit plots and by comparing predicted pharmacokinetic profiles with in vivo pharmacokinetic data. Predictions were performed to illustrate the average concentration at steady state (C ss,avg) values, used as an indicator for efficacy, of acetaminophen achieved following administration of 1000 mg every 6 h. Furthermore, as a measurement of potential hepatotoxicity, the molar dose fraction of acetaminophen converted to N-acetyl-p-benzoquinone imine (NAPQI) was estimated. Results PBPK models successfully predicted the pharmacokinetics of acetaminophen and its metabolites in non-pregnant and pregnant women. Predictions resulted in the lowest C ss,avg in the third trimester (median [interquartile range]: 4.5 [3.8-5.1] mg/L), while C ss,avg was 6.7 [5.9-7.4], 5.6 [4.7-6.3], and 4.9 [4.1-5.5] mg/L in non-pregnant, first trimester, and second trimester populations, respectively. Assuming a constant raised cytochrome P450 2E1 activity throughout pregnancy, the molar dose fraction of acetaminophen converted to NAPQI was highest during the first trimester (median [interquartile range]: 11.0% [9.1-13.4%]), followed by the second (9.0% [7.5-11.0%]) and third trimester (8.2% [6.8-10.1%]), compared with non-pregnant women (7.7% [6.4-9.4%]). Conclusion Acetaminophen exposure is lower in pregnant than in non-pregnant women, and is related to pregnancy duration. Despite these findings, higher dose adjustments cannot be advised yet as it is unknown whether pregnancy affects the toxicodynamics of NAPQI. Information on glutathione abundance during pregnancy and NAPQI in vivo data are required to further refine the presented model.
Future efforts should focus on integration of the already available knowledge and the collection of data on the impact of non-maturational covariates. These kinds of PK efforts will become clinically important when subsequently linked to PD, ultimately covering both wanted effects and undesired side-effects.
Background: In clinical pharmacokinetic (PK) studies, pregnant women are significantly underrepresented because of ethical and legal reasons which lead to a paucity of information on potential PK changes in this population. As a consequence, pharmacometric tools became instrumental to explore and quantify the impact of PK changes during pregnancy. Methods: We explore and discuss the typical characteristics of population PK and physiologically based pharmacokinetic (PBPK) models with a specific focus on pregnancy and postpartum. Results: Population PK models enable the analysis of dense, sparse or unbalanced data to explore covariates in order to (partly) explain inter-individual variability (including pregnancy) and to individualize dosing. For population PK models, we subsequently used an illustrative approach with ketorolac data to highlight the relevance of enantiomer specific modeling for racemic drugs during pregnancy, while data on antibiotic prophylaxis (cefazolin) during surgery illustrate the specific characteristics of the fetal compartments in the presence of timeconcentration profiles. For PBPK models, an overview on the current status of reports and papers during pregnancy is followed by a PBPK cefuroxime model to illustrate the added benefit of PBPK in evaluating dosing regimens in pregnant women. Conclusions: Pharmacometric tools became very instrumental to improve perinatal pharmacology. However, to reach their full potential, multidisciplinary collaboration and structured efforts are needed to generate more information from already available datasets, to share data and models, and to stimulate cross talk between clinicians and pharmacometricians to generate specific observations (pathophysiology during pregnancy, breastfeeding) needed to further develop the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.