Several patients with obsessive-compulsive disorder (OCD) who are refractory to adequate treatment with first-line treatments are considered treatment-resistant. Further surveys were to be implemented to explore the outcome predictors of the antiobsessional response. Such study was aimed at building a model suitable to predict the final outcome of a mixed OCD pharmacologic and nonpharmacologic treatment approaches. We studied 130 subjects with OCD who underwent pharmacologic (with selective serotonin reuptake inhibitors alone or with selective serotonin reuptake inhibitors and risperidone at low dosage) and/or behavioral therapy (using exposure and response prevention techniques). The following variables were used as predictors: symptoms dimension, as resulting from the Yale-Brown Obsessive-Compulsive Scale items factor analysis; neuropsychologic performances; and epidemiologic variables. The treatment response arising from 3 to 6 months of therapy was used as dependent variable. A conventional logistic regression was used to define a previsional model of treatment response and multilayer perceptrons and to supervise an artificial neural network technique. The 46.9% of the sample resulted to be refractory to treatment. Results obtained with the logistic regression model showed that the only predictors of treatment outcome are hoarding symptoms, repeating rituals, and counting compulsions. Furthermore, using all the variables considered in the models, multilayer perceptrons showed highly better predictive performance as compared with the logistic regression models (93.3% vs 61.5%, respectively, of correct classification of cases). Complex interactions between different clinical and neuropsychologic variables are involved in defining OCD treatment response profile, and nonlinear and interactive modeling strategies, that is, supervised artificial neural networks, seem to be more suitable to investigate this complexity than linear techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.