Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG-binding protein 2 gene (MECP2) cause >95% of classic cases, and currently there is no cure for this devastating disorder. The serotonin receptor 7 (5-HT7R) is linked to neuro-physiological regulation of circadian rhythm, mood, cognition, and synaptic plasticity. We presently report that 5-HT7R density is consistently reduced in cortical and hippocampal brain areas of symptomatic MeCP2-308 male mice, a RTT model. Systemic repeated treatment with LP-211 (0.25 mg/kg once/day for 7 days), a brain-penetrant selective 5-HT7R agonist, was able to rescue RTT-related defective performance: anxiety-related profiles in a Light/Dark test, motor abilities in a Dowel test, the exploratory behavior in the Marble Burying test, as well as memory in the Novelty Preference task. In the brain of RTT mice, LP-211 also reversed the abnormal activation of PAK and cofilin (key regulators of actin cytoskeleton dynamics) and of the ribosomal protein (rp) S6, whose reduced activation in MECP2 mutant neurons by mTOR is responsible for the altered protein translational control. Present findings indicate that pharmacological targeting of 5-HT7R improves specific behavioral and molecular manifestations of RTT, thus representing a first step toward the validation of an innovative systemic treatment. Beyond RTT, the latter might be extended to other disorders associated with intellectual disability.
Immune processes in ADHD are likely to be associated with mediators of inflammation, such as cytokines. These results contribute to our understanding of action of neural antibodies and cytokines in ADHD.
Nociceptin/orphanin FQ (N/OFQ) peptide and its receptor are not only ubiquitously expressed in mammalian brain and spinal cord but are also abundant in limbic structures, particularly in the hippocampus. The widespread distribution of N/OFQ reflects the broad spectrum of its biological actions such as nociception, food intake, spontaneous locomotor activity, and learning and memory processes. Since the hippocampus is involved in the control of adrenocortical activity, its role in stress-related phenomena is well characterized. In male Wistar rats, we first examined the effects of acute restraint stress (120 min) on the brain immunohistochemical localization of N/OFQ. The analysis carried out on sections obtained at the onset of stress revealed enhanced expression of N/OFQ in CA1, CA3, and the dentate gyrus as well as increased plasma corticosterone concentrations. Next, we examined whether endogenous glucocorticoid hormone plays a role in the modulation of hippocampal N/OFQ expression in response to stress. To this end, rats were injected with corticosterone (1 mg/kg) or subjected to restraint stress 1 week after adrenalectomy. Two hours after corticosterone administration, plasma glucocorticoid concentrations were comparable to those observed after restraint stress, while N/OFQ expression had significantly increased in all the hippocampal subfields examined. By contrast, in adrenalectomized rats, stress did not modify protein expression. These results confirm that stress can affect N/OFQ expression and that glucocorticoids may constitute hormonal mediators of this complex interplay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.