We consider the logistic growth model and analyze its relevant properties, such as the limits, the monotony, the concavity, the inflection point, the maximum specific growth rate, the lag time, and the threshold crossing time problem. We also perform a comparison with other growth models, such as the Gompertz, Korf, and modified Korf models. Moreover, we focus on some stochastic counterparts of the logistic model. First, we study a time-inhomogeneous linear birth-death process whose conditional mean satisfies an equation of the same form of the logistic one. We also find a sufficient and necessary condition in order to have a logistic mean even in the presence of an absorbing endpoint. Then, we obtain and analyze similar properties for a simple birth process, too. Then, we investigate useful strategies to obtain two time-homogeneous diffusion processes as the limit of discrete processes governed by stochastic difference equations that approximate the logistic one. We also discuss an interpretation of such processes as diffusion in a suitable potential. In addition, we study also a diffusion process whose conditional mean is a logistic curve. In more detail, for the considered processes we study the conditional moments, certain indices of dispersion, the first-passage-time problem, and some comparisons among the processes.
We analyze the one-dimensional telegraph random process confined by two boundaries, 0 and H > 0. The process experiences hard reflection at the boundaries (with random switching to full absorption). Namely, when the process hits the origin (the threshold H) it is either absorbed, with probability α, or reflected upwards (downwards), with probability 1 − α, for 0 < α < 1. We provide various results on the expected values of the renewal cycles and of the absorption time. The adopted approach is based on the analysis of the first-crossing times of a suitable compound Poisson process through linear boundaries. Our analysis includes also some comparisons between suitable stopping times of the considered telegraph process and of the corresponding diffusion process obtained under the classical Kac's scaling conditions. MSC: 60K15, 60J25
In modeling of port dynamics it seems reasonable to assume that the ships arrive on a somewhat scheduled basis and that there is a constant lay period during which, in a uniform way, each vessel can arrive at the port. In the present paper, we study the counting process N(t) which represents the number of scheduled vessels arriving during the time interval (0, t], $$t>0$$ t > 0 . Specifically, we provide the explicit expressions of the probability generating function, the probability distribution and the expected value of N(t). In some cases of interest, we also obtain the probability law of the stationary counting process representing the number of arrivals in a time interval of length t when the initial time is an arbitrarily chosen instant. This leads to various results concerning the autocorrelations of the random variables $$X_i$$ X i , $$i\in \mathbb {Z}$$ i ∈ Z , which give the actual interarrival time between the $$(i-1)$$ ( i - 1 ) -th and the i-th vessel arrival. Finally, we provide an application to a stochastic model for the queueing behavior at the port, given by a queueing system characterized by stationary interarrival times $$X_i$$ X i , exponential service times and an infinite number of servers. In this case, some results on the average number of customers and on the probability of an empty queue are disclosed.
We consider a lognormal diffusion process having a multisigmoidal logistic mean, useful to model the evolution of a population which reaches the maximum level of the growth after many stages. Referring to the problem of statistical inference, two procedures to find the maximum likelihood estimates of the unknown parameters are described. One is based on the resolution of the system of the critical points of the likelihood function, and the other is on the maximization of the likelihood function with the simulated annealing algorithm. A simulation study to validate the described strategies for finding the estimates is also presented, with a real application to epidemiological data. Special attention is also devoted to the first-passage-time problem of the considered diffusion process through a fixed boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.