TP53 truncating mutations are common in human tumors and are thought to give rise to p53-null alleles. Here, we show that TP53 exon-6 truncating mutations occur at higher than expected frequencies and produce proteins that lack canonical p53 tumor suppressor activities but promote cancer cell proliferation, survival, and metastasis. Functionally and molecularly, these p53 mutants resemble the naturally occurring alternative p53 splice variant, p53-psi. Accordingly, these mutants can localize to the mitochondria where they promote tumor phenotypes by binding and activating the mitochondria inner pore permeability regulator, Cyclophilin D (CypD). Together, our studies reveal that TP53 exon-6 truncating mutations, contrary to current beliefs, act beyond p53 loss to promote tumorigenesis, and could inform the development of strategies to target cancers driven by these prevalent mutations.DOI:
http://dx.doi.org/10.7554/eLife.17929.001
Bone marrow stromal cells (BMSCs) play pivotal roles in tissue maintenance and regeneration. Their origins, however, remain incompletely understood. Here we identify rare LNGFR + cells in human fetal and regenerative bone marrow that co-express endothelial and stromal markers. This endothelial subpopulation displays transcriptional reprogramming consistent with endothelial-to-mesenchymal transition (EndoMT) and can generate multipotent stromal cells that reconstitute the bone marrow (BM) niche upon transplantation. Single-cell transcriptomics and lineage tracing in mice confirm robust and sustained contributions of EndoMT to bone precursor and hematopoietic niche pools. Interleukin-33 (IL-33) is overexpressed in subsets of EndoMT cells and drives this conversion process through ST2 receptor signaling. These data reveal generation of tissue-forming BMSCs from mouse and human endothelial cells and may be instructive for approaches to human tissue regeneration.
Cancer initiation is orchestrated by interplay between tumor-initiating cells and their stromal/immune environment. Here, by adapted single-cell RNA sequencing, we decipher the predicted signaling between tissue-resident hematopoietic stem/progenitor cells (HSPCs) and their neoplastic counterparts with their native niches in the human bone marrow. LEPR+ stromal cells are identified as central regulators of hematopoiesis through predicted interactions with all cells in the marrow. Inflammatory niche remodeling and the resulting deprivation of critical HSPC regulatory factors is predicted to repress high-output HSC subsets in NPM1-mutated AML, with relative resistance of clonal cells. Stromal gene signatures reflective of niche remodeling are associated with reduced relapse rates and favorable outcome after chemotherapy across all genetic risk categories. Elucidation of the intercellular signaling defining human AML, thus predicts that inflammatory remodeling of stem cell niches drives tissue repression and clonal selection, but may pose a vulnerability for relapse-initiating cells in the context of chemotherapeutic treatment.
TP53 truncating mutations are common in human tumors and are thought to give rise to p53-null alleles. Here, we show that TP53 exon-6 truncating mutations occur at higher than expected frequencies and produce proteins that lack canonical p53 tumor suppressor activities but promote cancer cell proliferation, survival, and metastasis. Functionally and molecularly, these p53 mutants resemble the naturally occurring alternative p53 splice variant, p53-psi. Accordingly, these mutants can localize to the mitochondria where they promote tumor phenotypes by binding and activating the mitochondria inner pore permeability regulator, Cyclophilin D (CypD). Together, our studies reveal that TP53 exon-6 truncating mutations, contrary to current beliefs, act beyond p53 loss to promote tumorigenesis, and could inform the development of strategies to target cancers driven by these prevalent mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.