Background: Freezing of Gait (FOG) is one of the most disabling motor complications of Parkinson’s disease, and consists of an episodic inability to move forward, despite the intention to walk. FOG increases the risk of falls and reduces the quality of life of patients and their caregivers. The phenomenon is difficult to appreciate during outpatients visits; hence, its automatic recognition is of great clinical importance. Many types of sensors and different locations on the body have been proposed. However, the advantages of a multi-sensor configuration with respect to a single-sensor one are not clear, whereas this latter would be advisable for use in a non-supervised environment. Methods: In this study, we used a multi-modal dataset and machine learning algorithms to perform different classifications between FOG and non-FOG periods. Moreover, we explored the relevance of features in the time and frequency domains extracted from inertial sensors, electroencephalogram and skin conductance. We developed both a subject-independent and a subject-dependent algorithm, considering different sensor subsets. Results: The subject-independent and subject-dependent algorithms yielded accuracies of 85% and 88% in the leave-one-subject-out and leave-one-task-out test, respectively. Results suggest that the inertial sensors positioned on the lower limb are generally the most significant in recognizing FOG. Moreover, the performance impairment experienced when using a single tibial accelerometer instead of the optimal multi-modal configuration is limited to 2–3%. Conclusions: The achieved results disclose the possibility of getting a good FOG recognition using a minimally invasive set-up made of a single inertial sensor. This is very significant in the perspective of implementing a long-term monitoring of patients in their homes, during activities of daily living.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.