Autosomal recessive nonsyndromic hearing impairment (NSHI) is a heterogeneous condition, for which 53 genetic loci have been reported, and 29 genes have been identified to date. One of these, OTOF, encodes otoferlin, a membrane-anchored calcium-binding protein that plays a role in the exocytosis of synaptic vesicles at the auditory inner hair cell ribbon synapse. We have investigated the prevalence and spectrum of deafness-causing mutations in the OTOF gene. Cohorts of 708 Spanish, 83 Colombian, and 30 Argentinean unrelated subjects with autosomal recessive NSHI were screened for the common p.Gln829X mutation. In compound heterozygotes, the second mutant allele was identified by DNA sequencing. In total, 23 Spanish, two Colombian and two Argentinean subjects were shown to carry two mutant alleles of OTOF. Of these, one Colombian and 13 Spanish subjects presented with auditory neuropathy. In addition, a cohort of 20 unrelated subjects with a diagnosis of auditory neuropathy, from several countries, was screened for mutations in OTOF by DNA sequencing. A total of 11 of these subjects were shown to carry two mutant alleles of OTOF. In total, 18 pathogenic and four neutral novel alleles of the OTOF gene were identified. Haplotype analysis for markers close to OTOF suggests a common founder for the novel c.2905_2923delinsCTCCGAGCGCA mutation, frequently found in Argentina. Our results confirm that mutation of the OTOF gene correlates with a phenotype of prelingual, profound NSHI, and indicate that OTOF mutations are a major cause of inherited auditory neuropathy.
The miR-96, miR-182 and miR-183 microRNA (miRNA) family is essential for differentiation and function of the vertebrate inner ear. Recently, point mutations within the seed region of miR-96 were reported in two Spanish families with autosomal dominant non-syndromic sensorineural hearing loss (NSHL) and in a mouse model of NSHL. We screened 882 NSHL patients and 836 normal-hearing Italian controls and identified one putative novel mutation within the miR-96 gene in a family with autosomal dominant NSHL. Although located outside the mature miR-96 sequence, the detected variant replaces a highly conserved nucleotide within the companion miR-96*, and is predicted to reduce the stability of the pre-miRNA hairpin. To evaluate the effect of the detected mutation on miR-96/mir-96* biogenesis, we investigated the maturation of miR-96 by transient expression in mammalian cells, followed by real-time reverse-transcription polymerase chain reaction (PCR). We found that both miR-96 and miR-96* levels were significantly reduced in the mutant, whereas the precursor levels were unaffected. Moreover, miR-96 and miR-96* expression levels could be restored by a compensatory mutation that reconstitutes the secondary structure of the pre-miR-96 hairpin, demonstrating that the mutation hinders precursor processing, probably interfering with Dicer cleavage. Finally, even though the mature miR-96 sequence is not altered, we demonstrated that the identified mutation significantly impacts on miR-96 regulation of selected targets. In conclusion, we provide further evidence of the involvement of miR-96 mutations in human deafness and demonstrate that a quantitative defect of this miRNA may contribute to NSHL.
Posterior cortical atrophy (PCA) represents a degenerative disorder characterized by the development of higherorder visual deficit. 1 PCA may result from heterogeneous pathologies that make up tauopathies. An increasing number of mutations in the tau gene (microtubule-associated protein tau [MAPT]) causes a wide spectrum of clinical presentations known as frontotemporal dementia with parkinsonism linked to chromosome-17 (FTDP-17). 2 Symptomatology usually involves executive dysfunction and altered personality and behavior, with patients displaying parkinsonian features.We describe the case of a woman with PCA who further developed asymmetric motor signs. A mutation in the MAPT gene was detected, and a diagnosis of FTDP-17 was formulated. To our knowledge, this is the very first report of a patient suffering from FTDP-17 diagnosed with posterior cortical atrophy. Case ReportA 55-year-old woman started suffering in 2006 from altered perception of human faces. Initially the visual distortion was fluctuating; over the following year it became constant, and she could not recognize her husband and children by their faces anymore. She further developed visuospatial deficits, with difficulty in localizing stimuli, judging distances, or orienting herself in familiar surroundings. A first neurological examination revealed visual agnosia. She had no visual hallucinations or personality changes. Biochemical investigations and CSF analysis were normal. Her mother suffered from dementia that started when she was 80. Genetic tests for Alzheimer's disease genes (betaPP, PS1, PS2) were performed, revealing normal alleles.As the disease progressed, she developed difficulties manipulating objects with her left hand. On further neurological examination, she showed marked ocular apraxia, and she appeared to be cortically blind. Motor signs appeared and were confined to her left arm, with plastic rigidity, bradykinesia, and postural tremor; dopaminergic treatment was not tolerated.Brain magnetic resonance imaging (MRI) showed slight signal alteration in parieto-occipital white matter bilaterally without significant atrophy; an 18F-FDG PET brain study demonstrated decreased metabolism in the posterior parietal and occipital regions, compatible with PCA. To investigate
This natural model indicates that vitamin D-24 hydroxylase is a key physiologic regulator of calcitriol and plasma calcium levels, and that balanced reduction of 1,25(OH)(2)D and GFR is instrumental for the maintenance of physiologic calcium levels and balance in chronic kidney diseases.
Hereditary hearing loss (HL) is a very heterogeneous trait, with 46 gene identifications for non-syndromic HL. Mutations in GJB2 cause up to half of all cases of severe-to-profound congenital autosomal recessive non-syndromic HL, with 35delG being the most frequent mutation in Caucasians. Although a genotypephenotype correlation has been established for most GJB2 genotypes, the HL of 35delG homozygous patients is mild to profound. We hypothesise that this phenotypic variability is at least partly caused by the influence of modifier genes. By performing a whole-genome association (WGA) study on 35delG homozygotes, we sought to identify modifier genes. The association study was performed by comparing the genotypes of mild/moderate cases and profound cases. The first analysis included a pooling-based WGA study of a first set of 255 samples by using both the Illumina 550K and Affymetrix 500K chips. This analysis resulted in a ranking of all analysed single-nucleotide polymorphisms (SNPs) according to their P-values. The top 250 most significantly associated SNPs were genotyped individually in the same sample set. All 192 SNPs that still had significant P-values were genotyped in a second independent set of 297 samples for replication. The significant P-values were replicated in nine SNPs, with combined P-values between 3 Â 10 À3 and 1 Â 10 À4 . This study suggests that the phenotypic variability in 35delG homozygous patients cannot be explained by the effect of one major modifier gene. Significantly associated SNPs may reflect a small modifying effect on the phenotype. Increasing the power of the study will be of greatest importance to confirm these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.