BackgroundMicrobial polyesters, also known as polyhydroxyalkanoates (PHAs), closely resemble physical and mechanical features of petroleum derived plastics. Recombinant Escherichia coli strains are being used in industrial production of PHAs in Stirred Tank Bioreactors (STRs). However, use of Air-Lift Reactors (ALRs) has been known to offer numerous technical operating options over STRs, and as such has been successfully implemented in many bioprocesses. Halomonas boliviensis is a halophilic bacterium that is known to assimilate various carbohydrates and convert them into a particular type of PHA known as poly(3-hydroxybutyrate) (PHB). Owing to this capability, it has been used to synthesize the polyester using hydrolysates of starch or wheat bran in stirred tank bioreactors.ResultsThis research article firstly describes the production of PHB in shake flasks by H. boliviensis using different combinations of carbohydrates and partially hydrolyzed starch as carbon sources. The highest PHB yields, between 56 and 61 % (wt.), were achieved when either starch hydrolysate or a mixture of glucose and xylose were used as carbon sources. The starch hydrolysate obtained in this study was then used as carbon source in an ALR. The largest amount of PHB, 41 % (wt.), was attained after 24 hrs of cultivation during which maltose in the hydrolysate was assimilated more rapidly than glucose during active cell growth; however, the rate of assimilation of both the carbohydrates was found to be similar during synthesis of PHB. An incomplete pentose phosphate pathway, which lacks 6-phosphogluconate dehydrogenase, was deduced from the genome sequence of this bacterium and may result in the characteristic assimilation of glucose and maltose by the cells.ConclusionsThis study showed that the production of PHB by H. boliviensis using cheap substrates such as starch hydrolysate in a simple production system involving an ALR is feasible. Both maltose and glucose in the hydrolysate induce cell growth and PHB synthesis; most likely the cells balance adequately CoA and NAD(P)H during the assimilation of these carbohydrates. The combination of cheap substrates, simple production systems and the use of non-strict sterile conditions by the halophile H. boliviensis are desirable traits for large scale production of PHB, and should lead to a competitive bioprocess.Electronic supplementary materialThe online version of this article (doi:10.1186/s40709-015-0031-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.