Although early aggressive and prolonged treatment with specific antibiotics can extend survival in patients with cystic fibrosis (CF) colonized by opportunistic Pseudomonas aeruginosa (PA), antibiotics fail to eradicate the infecting multidrug-resistant (MDR) PA strains in CF. Century-long research has suggested treating patients with bacteriophages (phages, prokaryotic viruses) naturally hosted by bacteria. Although the only phage types used in therapy, lytic phages, lyse PA aggregated in biofilm matrix by depolymerase degrading enzymes, how they can effectively, safely, and persistently do so in patients with CF is unclear. Even though advanced techniques for formulating phage cocktails, training phages and collecting phage libraries have improved efficacy in vitro, whether personalized or ready-to-use therapeutic approaches or phages and antibiotics combined are effective and safe in vivo, and can reduce PA biofilms, remains debatable. Hence, to advance clinical research on phage therapy in clinical trials, also involving mucoid and non-mucoid multidrug-resistant PA in CF, and overcome problems in Western international regulations, we need reliable and repeatable information from experiments in vitro and in vivo on phage characterization, cocktail selection, personalized approaches, and phages combined with antibiotics. These findings, challenges, and promises prompted us to undertake this argumentative review to seek up-to-date information from papers describing lytic phage activity tested in vitro on PA laboratory strains, and PA strains from chronic infections including CF. We also reviewed in vivo studies on phage activity on pulmonary and non-pulmonary animal host models infected by laboratory or CF PA strains. Our argumentative review provides essential information showing that future phage clinical research in CF should use well-characterized and selected phages isolated against CF PA, tested in vitro under dynamic conditions in cocktails or combined with antibiotics, and in vivo on non-pulmonary and pulmonary host models infected with mucoid and non-mucoid CF MDR PA. Our findings should encourage pharmaceutical industries to conduct clinical trials in vitro and in vivo testing patented genomic engineered phages from phage libraries combined with antibiotics to treat or even prevent multidrug-resistant PA in CF, thus helping international regulatory agencies to plan future clinical research on phage therapy in CF.
The purpose of the study was to evaluate the Von Restorff effect in normal ageing and in Alzheimer's disease (AD). A shortened paradigm was administered to three groups of subjects: young volunteers, elderly volunteers and patients with early-stage AD (MMSE>20). Each subject was presented with 25 lists of 10 words each, the target word appearing in double font size. A free recall phase followed the presentation of each list; after completion of the battery, a size recognition test was administered and subjects were inquired regarding the strategy employed and perception of target words. The total number of recalled words differed significantly among the three groups (young volunteers 144.4+/-38.6, elderly volunteers 86.5+/-17.6, patients 44.2+/-14.6). A significant difference in percentage of recall was found between target and non-target words in young (60.0+/-13.8% vs. 45.7%+/-15.0%, p<0.001) and in elderly (31.2+/-11.4% vs. 20.2+/-6.9%, p<0.001) volunteers, but not in patients (10.7+/-6.9% vs. 11.8+/-7.3%). The present study highlights that the Von Restorff effect can be detected in healthy elderly subjects, and that it is significantly reduced in patients in the early stage of AD. On the basis of the findings of the present study it is not possible to disentangle the contribution of visual-perceptual and encoding impairment, both of them potentially contributing to the observed reduction.
BackgroundWhether information from clinical trial registries (CTRs) and published randomised controlled trial (RCTs) differs remains unknown. Knowing more about discrepancies should alert those who rely on RCTs for medical decision-making to possible dissemination or reporting bias. To provide help in critically appraising research relevant for clinical practice we sought possible discrepancies between what CTRs record and paediatric RCTs actually publish. For this purpose, after identifying six reporting domains including funding, design, and outcomes, we collected data from 20 consecutive RCTs published in a widely read peer-reviewed paediatric journal and cross-checked reported features with those in the corresponding CTRs.MethodsWe collected data for 20 unselected, consecutive paediatric RCTs published in a widely read peer-reviewed journal from July to November 2013. To assess discrepancies, two reviewers identified and scored six reporting domains: funding and conflict of interests; sample size, inclusion and exclusion criteria or crossover; primary and secondary outcomes, early study completion, and main outcome reporting. After applying the Critical Appraisal Skills Programme (CASP) checklist, five reviewer pairs cross-checked CTRs and matching RCTs, then mapped and coded the reporting domains and scored combined discrepancy as low, medium and high.ResultsThe 20 RCTs were registered in five different CTRs. Even though the 20 RCTs fulfilled the CASP general criteria for assessing internal validity, 19 clinical trials had medium or high combined discrepancy scores for what the 20 RCTs reported and the matched five CTRs stated. All 20 RCTs selectively reported or failed to report main outcomes, 9 had discrepancies in declaring sponsorship, 8 discrepancies in the sample size, 9 failed to respect inclusion or exclusion criteria, 11 downgraded or modified primary outcome or upgraded secondary outcomes, and 13 completed early without justification. The CTRs for seven trials failed to index automatically the URL address or the RCT reference, and for 12 recorded RCT details, but the authors failed to report the results.ConclusionsMajor discrepancies between what CTRs record and paediatric RCTs publish raise concern about what clinical trials conclude. Our findings should make clinicians, who rely on RCT results for medical decision-making, aware of dissemination or reporting bias. Trialists need to bring CTR data and reported protocols into line with published data.Electronic supplementary materialThe online version of this article (doi:10.1186/s13063-016-1551-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.