The large-scale behaviour of entanglement entropy in finite-density states, in and out of equilibrium, can be understood using the physical picture of particle pairs. However, the full theoretical origin of this picture is not fully established yet. In this work, we clarify this picture by investigating entanglement entropy using its connection with the large-deviation theory for thermodynamic and hydrodynamic fluctuations. We apply the universal framework of Ballistic Fluctuation Theory (BFT), based the Euler hydrodynamics of the model, to correlation functions of branch-point twist fields, the starting point for computing Rényi entanglement entropies within the replica approach. Focusing on free fermionic systems in order to illustrate the ideas, we show that both the equilibrium behavior and the dynamics of Rényi entanglement entropies can be fully derived from the BFT. In particular, we emphasise that long-range correlations develop after quantum quenches, and accounting for these explain the structure of the entanglement growth. We further show that this growth is related to fluctuations of charge transport, generalising to quantum quenches the relation between charge fluctuations and entanglement observed earlier. The general ideas we introduce suggest that the large-scale behaviour of entanglement has its origin within hydrodynamic fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.