The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.
Gold nanoparticles (GNPs)‐based photothermal therapy (PTT) is a promising minimally invasive thermal therapy for the treatment of focal malignancies. Although GNPs‐based PTT has been known for over two decades and GNPs possess unique properties as therapeutic agents, the delivery of a safe and effective therapy is still an open question. This review aims at providing relevant and recent information on the usage of GNPs in combination with the laser to treat cancers, pointing out the practical aspects that bear on the therapy outcome. Emphasis is given to the assessment of the GNPs’ properties and the physical mechanisms underlying the laser‐induced heat generation in GNPs‐loaded tissues. The main techniques available for temperature measurement and the current theoretical simulation approaches predicting the therapeutic outcome are reviewed. Topical challenges in delivering safe thermal dosage are also presented with the aim to discuss the state‐of‐the‐art and the future perspective in the field of GNPs‐mediated PTT.
This work reports the optical properties of porcine pancreatic tissue in the broad wavelength range of 600–1100 nm. Absorption and reduced scattering coefficients (µa and µs′) of the ex vivo pancreas were obtained by means of Time-domain Diffuse Optical Spectroscopy. We have investigated different experimental conditions—including compression, repositioning, spatial sampling, temporal stability—the effect of the freezing procedure (fresh vs frozen-thawed pancreas), and finally inter-sample variability. Good repeatability under different experimental conditions was obtained (median coefficient of variation less than 8% and ~ 16% for µa and µs′, respectively). Freezing–thawing the samples caused an irreversible threefold reduction of µs′ and no effect on µa. The absorption and reduced scattering spectra averaged over different samples were in the range of 0.12–0.74 cm−1 and 12–21 cm−1 with an inter-sample variation of ~ 10% and ~ 40% for µa and µs′, respectively. The calculated effective transport coefficient (µeff) for fresh pancreatic tissue shows that regions between 800–900 nm and 1050–1100 nm are similar and offer the lowest tissue attenuation in the considered range (i.e., µeff ranging from 2.4 to 2.7 cm−1). These data, describing specific light-pancreas interactions in the therapeutic optical window for the first time, provide pivotal information for planning of light-based thermotherapies (e.g., laser ablation) and instruction of light transport models for biophotonic applications involving this organ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.