We reported previously that Mater is a maternal effect gene that is required for early embryonic development beyond the two-cell stage in mice. Here we show the expressional profile of Mater and its protein during oogenesis and embryogenesis as well as its subcellular localization in oocytes. Mater mRNA was detectable earliest in oocytes of type 2 follicles, whereas MATER protein appeared earliest in oocytes of type 3a primary follicles. Both mRNA and protein accumulated during oocyte growth. In situ hybridization showed that Mater mRNA appeared progressively less abundant in oocytes beyond type 5a primary follicles. By ribonuclease protection assay, Mater mRNA was abundant in germinal vesicle oocytes, but was undetectable in all stages of preimplantation embryos. In contrast, the protein persisted throughout preimplantation development. Immunogold electron microscopic analysis revealed that MATER was located in oocyte mitochondria and nucleoli, and close to nuclear pores. Taken together, our data indicate that Mater gene transcription and protein translation are active during oogenesis, but appear inactive during early embryogenesis. Thus, Mater and its protein are expressed in a manner typical of maternal effect genes. The presence of MATER protein in mitochondria and nucleoli suggests that it may participate in both cytoplasmic and nuclear events during early development.
These findings contribute in clarifying the relationship between hormones regulating the early phase of steroidogenesis confirming that AMH is playing a suppressive role on CYP19A1 expression stimulated by gonadotropin in hGCs. Furthermore, a similar inhibitory effect for AMH was observed on P450scc gene expression when activated by gonadotropin treatment.
Accumulating evidence suggests that metformin, used as an antidiabetic drug, possesses anti-cancer properties. Metformin reduced the incidence and growth of experimental tumors in vivo. In a randomized clinical trial among nondiabetic patients, metformin treatment significantly decreased the number of aberrant crypt foci compared to the untreated group with a follow-up of 1 month. In our study, HT29 cells were treated with graded concentrations of metformin, 10 mM/25 mM/50 mM for 24/48 h. We performed immunofluorescence experiments by means of confocal microscopy and western blot analysis to evaluate a panel of factors involved in apoptotic/autophagic processes and oxidative stress response. Moreover, HT29 cells treated with metformin were analyzed by a flow cytometry assay to detect the cell apoptotic rate. The results demonstrate that metformin exerts growth inhibitory effects on cultured HT29 cells by increasing both apoptosis and autophagy; moreover, it affects the survival of cultured cells inhibiting the transcriptional activation of Nuclear factor E2-related factor 2 (NRF-2) and nuclear factor-kappa B (NF-κB). The effects of metformin on HT29 cells were dose- and time-dependent. These results are very intriguing since metformin is emerging as a multi-faceted drug: It has a good safety profile and is associated with low cost and might be a promising candidate for the prevention or the treatment of colorectal cancer.
Multiple myeloma (MM) is characterized by severely imbalanced bone remodeling. In this study, we investigated the potential effect of proteasome inhibitors (PIs), a class of drugs known to stimulate bone formation, on the mechanisms involved in osteocyte death induced by MM cells. First, we performed a histological analysis of osteocyte viability on bone biopsies on a cohort of 37 MM patients with symptomatic disease. A significantly higher number of viable osteocytes was detected in patients treated with a bortezomib (BOR)-based regimen compared with those treated without BOR. Interestingly, both osteocyte autophagy and apoptosis were affected in vivo by BOR treatment. Thereafter, we checked the in vitro effect of BOR to understand the mechanisms whereby BOR maintains osteocyte viability in bone from MM patients. We found that osteocyte and preosteocyte autophagic death was triggered during coculturing with MM cells. Our evaluation was conducted by analyzing either autophagy markers microtubule-associated protein light chain 3 beta (LC3B) and SQSTM1/sequestome 1 (p62) levels, or the cell ultrastructure by transmission electron microscopy. PIs were found to increase the basal levels of LC3 expression in the osteocytes while blunting the myeloma-induced osteocyte death. PIs also reduced the autophagic death of osteocytes induced by high-dose dexamethasone (DEX) and potentiated the anabolic effect of PTH(1-34). Our data identify osteocyte autophagy as a new potential target in MM bone disease and support the use of PIs to maintain osteocyte viability and improve bone integrity in MM patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.