Orthodontic and periodontal splints are prepared with round or flat metallic wires. As these devices cannot be used in patients with allergy to metals or with aesthetic demands, fiber-reinforced composite (FRC) retainers have been introduced. Stiffness of FRC materials could reduce physiologic tooth movement. In order to lower rigidity of conventional FRC retainers, a modified construction technique that provided a partial (spot) composite coverage of the fiber has been tested and compared with metallic splints and full-bonded FRCs. Flat (Bond-a-Braid, Reliance Orthodontic Products) and round (Penta-one 0155, Masel Orthodontics) stainless steel splints, conventional FRC splints, and experimental spot-bonded FRC retainers (Everstick Ortho, StickTech) were investigated. The strength to bend the retainers at 0.1 mm deflection and at maximum load was measured with a modified Frasaco model. No significant differences were reported among load values of stainless steel wires and experimental spot-bonded FRC retainers at 0.1 mm deflection. Higher strength values were recoded for conventional full-bonded FRCs. At maximum load no significant differences were reported between metallic splints (flat and round) and experimental spot-bonded FRCs, and no significant differences were reported between spot- and full-bonded FRC splints. These results encourage further tests in order to evaluate clinical applications of experimental spot-bonded FRC retainers.
Fiber-reinforced composite (FRC) retainers are an aesthetic alternative to conventional Stainless Steel splints. They are generally used with a full bonded technique, but some studies demonstrated that they could be managed with a spot bonding technique to significantly decrease their rigidity. In order to propose this FRC spot bonding technique for clinical use, the aim of this study was to evaluate mechanical properties and surface wear of fibers left uncovered. Tests were made by simulating tooth brushing, comparing FRC spot bonding technique splints with stainless steel and FRC traditional technique splints. Specimens were tested both at 0.1 mm of deflection and at maximum load, showing higher values of rigidity for the FRC full bonded technique. After tooth brushing, no significant reduction in values at 0.1 mm deflection was reported, while we found a similar reduction in these values for the Stainless Steel and FRC spot bonding technique at maximum load, and no significant variation for the FRC full bonded technique. SEM images after tooth brushing showed wear for FRC fibers left uncovered, while no relevant wear signs in metal and conventional FRC fibers were noticed. Results showed that FRC spot bonding technique has advantages in mechanical properties when compared to the FRC traditional full bonding technique, also after tooth brushing. However, the surface wear after tooth brushing in the FRC spot bonding technique is considerable and other tests must be performed before promoting this technique for routine clinical use.
Fiber reinforced Composite (FRC) retainers have been introduced as an aesthetic alternative to conventional metallic splints, but present high rigidity. The purpose of the present investigation was to evaluate bending and fracture loads of FRC splints bonded with conventional full-coverage of the FRC with a composite compared with an experimental bonding technique with a partial (spot-) resin composite cover. Stainless steel rectangular flat, stainless steel round, and FRC retainers were tested at 0.2 and 0.3 mm deflections and at a maximum load. Both at 0.2 and 0.3 mm deflections, the lowest load required to bend the retainer was recorded for spot-bonded stainless steel flat and round wires and for spot-bonded FRCs, and no significant differences were identified among them. Higher force levels were reported for full-bonded metallic flat and round splints and the highest loads were recorded for full-bonded FRCs. At the maximum load, no significant differences were reported among spot-and full-bonded metallic splints and spot-bonded FRCs. The highest loads were reported for full bonded FRCs. The significant decrease in the rigidity of spot-bonded FRC splints if compared with full-bonded retainers suggests further tests in order to propose this technique for clinical use, as they allow physiologic tooth movement, thus presumably reducing the risk of ankylosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.