The Neurospora crassa blind mutant white collar‐1 (wc‐1) is pleiotropically defective in all blue light‐induced phenomena, establishing a role for the wc‐1 gene product in the signal transduction pathway. We report the cloning of the wc‐1 gene isolated by chromosome walking and mutant complementation. The elucidation of the wc‐1 gene product provides a key piece of the blue light signal transduction puzzle. The wc‐1 gene encodes a 125 kDa protein whose encoded motifs include a single class four, zinc finger DNA binding domain and a glutamine‐rich putative transcription activation domain. We demonstrate that the wc‐1 zinc finger domain, expressed in Escherichia coli, is able to bind specifically to the promoter of a blue light‐regulated gene of Neurospora using an in vitro gel retardation assay. Furthermore, we show that wc‐1 gene expression is autoregulated and is transcriptionally induced by blue light irradiation.
We describe the Arabidopsis gene DAG2 encoding a Dof zinc finger protein and show that it is involved in the control of seed germination. An Arabidopsis mutant line with a T-DNA insertion in DAG2 isolated by reverse genetics produces seeds that are substantially more dependent than the wild type on the physical stimuli-light and cold treatment-that promote germination. Mutant dag2 seeds also are less sensitive to the germination-promotive effect of gibberellins, because a 10-fold higher amount of gibberellins is needed to restore germination when endogenous gibberellin biosynthesis is blocked. The seed germination characteristics of the dag2 mutant are opposite to those of dag1 , a knockout mutant of another Dof gene ( DAG1 ) that we showed previously to be involved in the control of seed germination, and are similar to those of plants that overexpress DAG1 . The promoter of the DAG2 gene is active specifically in the vascular system of the mother plant but not in the embryo, and segregation analysis indicates that the effect of the dag2 mutation is maternal. Both characteristics are in common with DAG1 ; additionally, the DAG1 and DAG2 proteins share high sequence homology and an identical zinc finger domain. These data suggest, and the germination phenotype of the double mutant is compatible with, a model whereby the zinc finger proteins DAG1 and DAG2 act on a maternal switch that controls seed germination, possibly by regulating the same gene(s).
SUMMARYWe have previously shown that inactivation of the gene encoding the Arabidopsis thaliana transcription factor DOF AFFECTING GERMINATION 1 (DAG1) renders seed germination more sensitive to both phytochrome B (phyB) and gibberellins (GA). dag1 mutant seeds require less red (R) light fluence and a lower GA concentration than WT to germinate. Here, we show that inactivation of the gene PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 (PIL5) results in down-regulation of DAG1. Inactivation of PIL5 in the dag1 mutant background further increased the germination potential of dag1 mutant seeds, supporting the suggestion that DAG1 is under the positive control of PIL5. Germination of dag1phyB seeds showed a reduced requirement of gibberellins as compared with phyB mutant seeds, both in the presence and in the absence of GA biosynthesis. Furthermore, the GA biosynthetic gene AtGA3ox1 is upregulated in dag1 seeds as compared with the WT, and DAG1 actually binds to the AtGA3ox1 promoter, as shown by chromatin immunoprecipitation experiments. Expression analysis at different time points confirms that AtGA3ox1 is directly regulated by DAG1, while suggesting that DAG1 is not a direct regulatory target of PIL5. Our data indicate that in the phyB pathway leading to seed germination, DAG1 negatively regulates GA biosynthesis and suggest that DAG1 acts downstream of PIL5. In addition, the analysis of hypocotyls of dag1 and phyB mutant plantlets, of plantlets overexpressing phyB in the dag1 mutant, as well as of dag1phyB double mutant suggests that DAG1 may act as a negative regulatory element downstream of phyB also in hypocotyl elongation.
The pasticcino (pas) mutants of Arabidopsis thaliana are a new class of plant developmental mutants; members of this class show ectopic cell proliferation in cotyledons, extra layers of cells in the hypocotyl, and an abnormal apical meristem. This phenotype is correlated with both cell division and cell elongation defects. There are three complementation groups of pas mutants (pas1, pas2, and pas3, with, respectively 2, 1, and 4 alleles). Here we describe in more detail the pas1-1 allele, which was obtained by insertional mutagenesis. The PAS1 gene has been cloned and characterized; it encodes an immunophilin-like protein similar to the p59 FK506-binding protein (FKBP52). PAS1 is characterized by an FKBP-like domain and three tetratricopeptide repeat units. Although the presence of immunophilins in plants has already been demonstrated, the pas1-1 mutant represents the first inactivation of an FKBP-like gene in plants. PAS1 expression is altered in pas1 mutants and in the pas2 and pas3 mutants. The expression of the PAS1 gene is increased in the presence of cytokinins, a class of phytohormones originally discovered because of their ability to stimulate cell division. These results are of particular relevance as they show for the first time that an FKBP-like protein plays an important role in the control of plant development.In flowering plants, morphogenesis depends on the control of the pattern and numbers of cell divisions and on the control of cell elongation. Although there are many examples of controlled patterns of cell division, we still know very little about how local patterns of cell division are established and maintained (30). In Arabidopsis thaliana, the roles of cell division control in the development of the embryo, the shoot, and the root have been extensively studied (reviewed in references 29 and 30). In the last few years, much progress has been made in this field by the isolation of mutants in which single-gene mutations affect specific modes of cell division control. Some of the corresponding genes have been cloned from A. thaliana (SHOOT MERISTEMLESS [STM] and SCARECROW [SCR]) maize (KNOTTED1), and petunia (NO APICAL MERISTEM) (reviewed in reference 30). These genes do not seem to specify components of the cell division machinery, but they are thought to act upstream in the control of cell division. The elements at the interface between genes like STM and SCR and cell cycle regulators, such as cyclins and the CDC genes, are still unknown.The growth and differentiation of higher plants is also greatly dependent on environmental stimuli, such as light and temperature, and on endogenous factors, such as phytohormones. Cytokinins (CKs) were originally discovered because of their ability to promote, along with auxins, plant cell division and organogenesis (reviewed in reference 9). Although this discovery initiated a vast amount of fundamental and applied research on the hormonal control of cell proliferation and regeneration, the mechanisms by which auxins and CKs act and interact at the molecu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.