Time series analysis is quickly proceeding towards long and complex tasks. In recent years, fast approximate algorithms for discord search have been proposed in order to compensate for the increasing size of the time series. It is more interesting, however, to find quick exact solutions. In this research, we improved HOT SAX by exploiting two main ideas: the warm-up process, and the similarity between sequences close in time. The resulting algorithm, called HOT SAX Time (HST), has been validated with real and synthetic time series, and successfully compared with HOT SAX, RRA, SCAMP, and DADD. The complexity of a discord search has been evaluated with a new indicator, the cost per sequence (cps), which allows one to compare searches on time series of different lengths. Numerical evidence suggests that two conditions are involved in determining the complexity of a discord search in a non-trivial way: the length of the discords, and the noise/signal ratio. In the case of complex searches, HST can be more than 100 times faster than HOT SAX, thus being at the forefront of the exact discord search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.