Among the many approaches to Coronavirus disease 2019 (COVID-19) prevention, the possible role of nutrition has so far been rather underestimated. Foods are very rich in substances, with a potential beneficial effect on health, and some of these could have an antiviral action or be important in modulating the immune system and in defending cells from the oxidative stress associated with infection. This short review draws the attention on some components of citrus fruits, and especially of the orange (Citrus sinensis), well known for its vitamin and flavonoid content. Among the flavonoids, hesperidin has recently attracted the attention of researchers, because it binds to the key proteins of the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several computational methods, independently applied by different researchers, showed that hesperidin has a low binding energy, both with the coronavirus “spike” protein, and with the main protease that transforms the early proteins of the virus (pp1a and ppa1b) into the complex responsible for viral replication. The binding energy of hesperidin to these important components is lower than that of lopinavir, ritonavir, and indinavir, suggesting that it could perform an effective antiviral action. Furthermore, both hesperidin and ascorbic acid counteract the cell damaging effects of the oxygen free radicals triggered by virus infection and inflammation. There is discussion about the preventive efficacy of vitamin C, at the dose achievable by the diet, but recent reviews suggest that this substance can be useful in the case of strong immune system burden caused by viral disease. Computational methods and laboratory studies support the need to undertake apposite preclinical, epidemiological, and experimental studies on the potential benefits of citrus fruit components for the prevention of infectious diseases, including COVID-19.
IntroductionThis study was designed to investigate the putative anxiolytic-like activity of ultra-low doses of Gelsemium sempervirens (G. sempervirens), produced according to the homeopathic pharmacopeia.MethodsFive different centesimal (C) dilutions of G. sempervirens (4C, 5C, 7C, 9C and 30C), the drug buspirone (5 mg/kg) and solvent vehicle were delivered intraperitoneally to groups of ICR-CD1 mice over a period of 9 days. The behavioral effects were assessed in the open-field (OF) and light–dark (LD) tests in blind and randomized fashion.ResultsMost G. sempervirens dilutions did not affect the total distance traveled in the OF (only the 5C had an almost significant stimulatory effect on this parameter), indicating that the medicine caused no sedation effects or unspecific changes in locomotor activity. In the same test, buspirone induced a slight but statistically significant decrease in locomotion. G. sempervirens showed little stimulatory activity on the time spent and distance traveled in the central zone of the OF, but this effect was not statistically significant. In the LD test, G. sempervirens increased the % time spent in the light compartment, an indicator of anxiolytic-like activity, with a statistically significant effect using the 5C, 9C and 30C dilutions. These effects were comparable to those of buspirone. The number of transitions between the compartments of the LD test markedly increased with G. sempervirens 5C, 9C and 30C dilutions.ConclusionThe overall pattern of results provides evidence that G. sempervirens acts on the emotional reactivity of mice, and that its anxiolytic-like effects are apparent, with a non-linear relationship, even at high dilutions.
Background: Basophils are circulating cells involved in hypersensitivity reactions and allergy but many aspects of their activation, including the sensitivity to external triggering factors and the molecular aspects of cell responses, are still to be focused. In this context, polychromatic flow cytometry (PFC) is a proper tool to investigate basophil function, as it allows to distinguish the expression of several membrane markers upon activation in multiple experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.