Background The aim of the present review is to discuss how the promising field of biobanking can support health care research strategies. As the concept has evolved over time, biobanks have grown from simple biological sample repositories to complex and dynamic units belonging to large infrastructure networks, such as the Pan-European Biobanking and Biomolecular Resources Research Infrastructure (BBMRI). Biobanks were established to support scientific knowledge. Different professional figures with varied expertise collaborate to obtain and collect biological and clinical data from human subjects. At same time biobanks preserve the human and legal rights of each person that offers biomaterial for research. Methods A literature review was conducted in April 2019 from the online database PubMed, accessed through the Bibliosan platform. Four primary topics related to biobanking will be discussed: (i) evolution, (ii) bioethical issues, (iii) organization, and (iv) imaging. Results Most biobanks were founded as local units to support specific research projects, so they evolved in a decentralized manner. The consequence is an urgent needing for procedure harmonization regarding sample collection, processing, and storage. Considering the involvement of biomaterials obtained from human beings, different ethical issues such as the informed consent model, sample ownership, veto rights, and biobank sustainability are debated. In the face of these methodological and ethical challenges, international organizations such as BBMRI play a key role in supporting biobanking activities. Finally, a unique development is the creation of imaging biobanks that support the translation of imaging biomarkers (identified using a radiomic approach) into clinical practice by ensuring standardization of data acquisition and analysis, accredited technical validation, and transparent sharing of biological and clinical data. Conclusion Modern biobanks permit large-scale analysis for individuation of specific diseases biomarkers starting from biological or digital material (i.e., bioimages) with well-annotated clinical and biological data. These features are essential for improving personalized medical approaches, where effective biomarker identification is a critical step for disease diagnosis and prognosis.
Recent advancements in imaging diagnostics have focused on the use of nanostructures that entrap Magnetic Resonance Imaging (MRI) Contrast Agents (CAs), without the need to chemically modify the clinically approved compounds. Nevertheless, the exploitation of microfluidic platforms for their controlled and continuous production is still missing. Here, a microfluidic platform is used to synthesize crosslinked Hyaluronic Acid NanoParticles (cHANPs) in which a clinically relevant MRI-CAs, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA), is entrapped. This microfluidic process facilitates a high degree of control over particle synthesis, enabling the production of monodisperse particles as small as 35 nm. Furthermore, the interference of Gd-DTPA during polymer precipitation is overcome by finely tuning process parameters and leveraging the use of hydrophilic-lipophilic balance (HLB) of surfactants and pH conditions. For both production strategies proposed to design Gd-loaded cHANPs, a boosting of the relaxation rate T1 is observed since a T1 of 1562 is achieved with a 10 μM of Gd-loaded cHANPs while a similar value is reached with 100 μM of the relevant clinical Gd-DTPA in solution. The advanced microfluidic platform to synthesize intravascularly-injectable and completely biocompatible hydrogel nanoparticles entrapping clinically approved CAs enables the implementation of straightforward and scalable strategies in diagnostics and therapy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.