Efficient high-dimensional performance modeling of today's complex analog and mixed-signal (AMS) circuits with large-scale process variations is an important yet challenging task. In this paper, we propose a novel performance modeling algorithm that is referred to as Bayesian Model Fusion (BMF). Our key idea is to borrow the simulation data generated from an early stage (e.g., schematic level) to facilitate efficient high-dimensional performance modeling at a late stage (e.g., post layout) with low computational cost. Such a goal is achieved by statistically modeling the performance correlation between early and late stages through Bayesian inference. Several circuit examples designed in a commercial 32nm CMOS process demonstrate that BMF achieves up to 9× runtime speedup over the traditional modeling technique without surrendering any accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.