Aspergillus fumigatus is the most common cause of invasive mold disease in humans. The mechanisms underlying the adherence of this mold to host cells and macromolecules have remained elusive. Using mutants with different adhesive properties and comparative transcriptomics, we discovered that the gene uge3, encoding a fungal epimerase, is required for adherence through mediating the synthesis of galactosaminogalactan. Galactosaminogalactan functions as the dominant adhesin of A. fumigatus and mediates adherence to plastic, fibronectin, and epithelial cells. In addition, galactosaminogalactan suppresses host inflammatory responses in vitro and in vivo, in part through masking cell wall β-glucans from recognition by dectin-1. Finally, galactosaminogalactan is essential for full virulence in two murine models of invasive aspergillosis. Collectively these data establish a role for galactosaminogalactan as a pivotal bifunctional virulence factor in the pathogenesis of invasive aspergillosis.
Aspergillus fumigatus is a pathogenic mold which causes invasive, often fatal, pulmonary disease in immunocompromised individuals. Recently, proteins involved in the biosynthesis of trehalose have been linked with virulence in other pathogenic fungi. We found that the trehalose content increased during the developmental life cycle of A. fumigatus, throughout which putative trehalose synthase genes tpsA and tpsB were significantly expressed. The trehalose content of A. fumigatus hyphae also increased after heat shock but not in response to other stressors. This increase in trehalose directly correlated with an increase in expression of tpsB but not tpsA. However, deletion of both tpsA and tpsB was required to block trehalose accumulation during development and heat shock. The ⌬tpsAB double mutant had delayed germination at 37°C, suggesting a developmental defect. At 50°C, the majority of ⌬tpsAB spores were found to be nonviable, and those that were viable had severely delayed germination, growth, and subsequent sporulation. ⌬tpsAB spores were also susceptible to oxidative stress. Surprisingly, the ⌬tpsAB double mutant was hypervirulent in a murine model of invasive aspergillosis, and this increased virulence was associated with alterations in the cell wall and resistance to macrophage phagocytosis. Thus, while trehalose biosynthesis is required for a number of biological processes that both promote and inhibit virulence, in A. fumigatus the predominant effect is a reduction in pathogenicity. This finding contrasts sharply with those for other fungi, in which trehalose biosynthesis acts to enhance virulence.
Background:Aspergillus fumigatus produces two galactose-containing exopolysaccharides, galactomannan and galactosaminogalactan. Results: Galactosaminogalactan synthesis requires the UDP-glucose 4-epimerases, Uge5 and Uge3, whereas galactomannan synthesis requires Uge5 alone. Conclusion: Epimerases in A. fumigatus play both distinct and overlapping roles in exopolysaccharide synthesis. Significance: Uncovering the biosynthetic pathways of galactosaminogalactan will be crucial in developing therapeutics targeting this exopolysaccharide.
Posaconazole prophylaxis has proven highly effective in preventing invasive fungal infections, despite relatively low serum concentrations. However, high tissue levels of this agent have been reported in treated patients. We therefore hypothesized that the intracellular levels of antifungal agents are an important factor in determining the success of fungal prophylaxis. To examine the effect of host cell-associated antifungals on the growth of medically important molds, we exposed cells to antifungal agents and removed the extracellular drug prior to infection. Epithelial cells loaded with posaconazole and its parent molecule itraconazole, but not other antifungals, were able to inhibit fungal growth for at least 48 h and were protected from damage caused by infection. Cell-associated posaconazole levels were 40-to 50-fold higher than extracellular levels, and the drug was predominantly detected in cellular membranes. Fungistatic levels of posaconazole persisted within epithelial cells for up to 48 h. Therefore, the concentration of posaconazole in mammalian host cell membranes mediates its efficacy in prophylactic regimens and likely explains the observed discrepancy between serum antifungal levels and efficacy.
Posaconazole concentrates within host cell membranes and rapidly transfers to A. fumigatus, where it accumulates to high concentrations and persists at the site of its target enzyme. These intracellular and intercellular pharmacokinetic properties probably contribute to the efficacy of PCZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.