In the last decade, the drone market has grown rapidly for both civil and military purposes. Due to their versatility, drones demand is constantly increasing, with several industrial players joining the venture to transfer urban mobility to the air. This has exacerbated the problem of noise pollution, mainly due to the relatively lower altitude of these vehicles and to the proximity of their routes to extremely densely populated areas. In particular, both the aerodynamic and aeroacoustic optimization of the propulsive system and of its interaction with the airframe are key aspects of the design of aerial vehicles for the success or the failure of their mission. The industrial challenge involves finding the best performance in terms of loading, efficiency and weight, and, at the same time, the most silent configuration. For this reason, research has focused on an initial localization of the noise sources and, on further analysis, of the noise generation mechanism, focusing particularly on directivity and scattering. The aim of the present study is to review the noise source mechanisms and the state-of-the-art technologies available in literature for its suppression, focusing especially on the fluid-dynamic aspects of low Reynolds numbers of the propulsive system and on the interaction of the propulsive-system flow with the airframe.
In the last decade, the drone market has grown rapidly for both civil and military purposes. Due to their versatility, the demand for drones is constantly increasing, with several industrial players joining the venture to transfer urban mobility to the air. This has exacerbated the problem of noise pollution, mainly due to the relatively lower altitude of these vehicles and the proximity of their routes to extremely densely populated areas. In particular, both the aerodynamic and aeroacoustic optimization of the propulsive system and of its interaction with the airframe are key aspects of unmanned aerial vehicle design that can signify the success or the failure of their mission. The industrial challenge involves finding the best performance in terms of loading, efficiency and weight, and, at the same time, the most silent configuration. For these reasons, research has focused on an initial localization of the noise sources and, on further analysis, of the noise generation mechanism, focusing particularly on directivity and scattering. The aim of the present study is to review the noise source mechanisms and the state-of-the-art control strategies, available in the literature, for its suppression, focusing especially on the fluid-dynamic aspects of low Reynolds numbers of the propulsive system and on the interaction of the propulsive system flow with the airframe.
An experimental investigation of the noise emissions of a twin-rotor together with the evolution and spatial organization of the flow structures wakes has been carried out by means of aeroacoustics and time-resolved PIV (TR-PIV) measurements. Each rotor is characterized by three bladed propellers with diameter D = 393.7 mm running at four different rotational speeds (2620, 3500, 4360, 5200 RPM). Intricate flow patterns characterized by periodic vortical structures are formed in the wake of the rotors in twin configuration at the rotor-to-rotor distance of 1.02D. Their interaction determines a strong impact on the aerodynamic performances as well as on the noise generation. Hence, the need for TR-PIV measurements relies on what is the role of these instantaneous flow patterns to unveil the spatial organization and the dynamic behaviour inspected by imaging the region between the rotors. It is found that the flow organization and the interaction between evolution of vorticity intensity of tip vortices characterize the twin-rotors wakes.
The aim of the present manuscript is to investigate the noise footprint of an isolated propeller in different flight configurations for the propulsion of a hybrid-electric aircraft. Experimental tests were performed at the Low-Turbulence Tunnel located at Delft University of Technology with a powered propeller model and flush-mounted microphones in the tunnel floor. The propeller was investigated at different advance ratios in order to study the noise impact in propulsive and energy harvesting configurations. For brevity, this work only reports the results at the conditions of maximum efficiency in both propulsive and energy harvesting regimes, for a fixed blade pitch setting. Comparing these two configurations, a frequency-domain analysis reveals a significant modification in the nature of the noise source. In the propulsive configuration, most of the energy is related to the tonal noise component, as expected for an isolated propeller; however, in energy harvesting configuration, the broadband noise component increases significantly compared to the propulsive mode. A more detailed analysis requires separation of the two noise components and, for this purpose, an innovative decomposition strategy based on proper orthogonal decomposition (POD) has been defined. This novel technique shows promising results; both in the time and in the Fourier domains the two reconstructed components perfectly describe the original signal and no phase delays or other mathematical artifices are introduced. In this sense, it can represent a very powerful tool to identify noise sources and, at the same time, to define a proper control strategy aimed at noise mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.