This paper describes the design and realization of a 5.6-GHz ultrawide-bandwidth-based position measurement system. The system was entirely made using off-the-shelf components and achieves centimeter-level accuracy in an indoor environment. It is based on asynchronous modulated pulse round-trip time measurements. Both system level and realization details are described along with experimental results including estimates of measurement uncertainties.Index Terms-Instrumentation and measurement, radio navigation, radio transceivers, signal processing algorithms, ultra wideband technology.
This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m 2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.