In this paper, we review classical and recent results on the Lagrangian description of dissipative systems. After having recalled Rayleigh extension of Lagrangian formalism to equations of motion with dissipative forces, we describe Helmholtz conditions, which represent necessary and sufficient conditions for the existence of a Lagrangian function for a system of differential equations. These conditions are presented in different formalisms, some of them published in the last decades. In particular, we state the necessary and sufficient conditions in terms of multiplier factors, discussing the conditions for the existence of equivalent Lagrangians for the same system of differential equations. Some examples are discussed, to show the application of the techniques described in the theorems stated in this paper.
We consider complex foliated tori, their periods and polarizations on them. We define the moduli space of polarized complex foliated tori and show that it is a normal analytic complex space. Finally we discuss some examples.
An old and debated problem in Mechanics concerns the capacity of finite dimensional Lagrangian systems to describe dissipation phenomena. It is true that Helmholtz conditions determine not-always verifiable conditions establishing when a system of n second-order ordinary differential equations in normal form (nODEs) be the Lagrange equations deriving from an nth dimensional Lagrangian. However, it is also true that one could conjecture that, given nODEs it is possible to find a ( n+ k)th dimensional Lagrangian such that the evolution of suitably chosen n Lagrangian parameters allows for the approximation of the solutions of the nODEs. In fact, while it is well known that the ordinary differential equations (ODEs) usually introduced for describing some dissipation phenomena do not verify Helmholtz conditions, in this paper, we give some preliminary evidence for a positive answer to the conjecture that a dissipative system having n degrees of freedom (DOFs) can be approximated, in a finite time interval and in a suitable norm, by an extended Lagrangian system, having a greater number of DOFs. The theoretical foundation necessary to formulate such a conjecture is here laid and three different examples of extended Lagrangians are shown. Finally, we give some computational results, which encourage to deepen the study of the theoretical aspects of the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.