Aggregation of the amyloid Abeta peptide and its accumulation into insoluble deposits (plaques) are believed to be the main cause of neuronal dysfunction associated with Alzheimer's disease (AD); small molecules that can interfere with the Abeta amyloid fibril formation are therefore of interest for a potential therapeutic strategy. Three new trehalose-conjugated peptides of the well known beta-sheet breaker peptide iAbeta5p, were synthesized. The disaccharide was covalently attached to different sites of the LPFFD peptide chain, i.e. at the N-terminus, C-terminus or at the Asp side chain. CD spectroscopy in different solvents was used to assess changes in the peptide conformation of these compounds. The effects of these glycopeptides on the self-assembly and morphology of Abeta aggregates were investigated by ThT fluorescence assay and dynamic Scanning Force Microscopy, respectively. All the synthesized compounds were tested as inhibitors of Abeta toxicity toward pure cultures of rat cortical neurons.
Saccharomyces cerevisiae Tel1 is the ortholog of human ATM kinase and initiates a cell cycle checkpoint in response to dsDNA breaks (DSBs). Tel1 ATM kinase is activated synergistically by naked dsDNA and the Mre11-Rad50-Xrs2 NBS1 complex (MRX). A multisubunit protein complex, which is related to human shelterin, protects telomeres from being recognized as DSBs, thereby preventing a Tel1 ATM checkpoint response. However, at very short telomeres, Tel1 ATM can be recruited and activated by the MRX complex, resulting in telomere elongation. Conversely, at long telomeres, Rap1-interacting-factor 2 (Rif2) is instrumental in suppressing Tel1 activity. Here, using an in vitro reconstituted Tel1 kinase activation assay, we show that Rif2 inhibits MRX-dependent Tel1 kinase activity. Rif2 discharges the ATP-bound form of Rad50, which is essential for all MRX-dependent activities. This conclusion is further strengthened by experiments with a Rad50 allosteric ATPase mutant that maps outside the conserved ATP binding pocket. We propose a model in which Rif2 attenuates Tel1 activity at telomeres by acting directly on Rad50 and discharging its activated ATPbound state, thereby rendering the MRX complex incompetent for Tel1 activation. These findings expand our understanding of the mechanism by which Rif2 controls telomere length.
The inhibition of amyloid formation is a promising therapeutic approach for the treatment of neurodegenerative diseases. Peptide-based inhibitors, which have been widely investigated, are generally derived from original amyloid sequences. Most interestingly, trehalose, a nonreducing disaccharide of α-glucose, is effective in preventing the aggregation of numerous proteins. We have determined that the development of hybrid compounds could provide new molecules with improved properties that might synergically increase the potency of their single moieties. In this work, the ability of Ac-LPFFD-Th, a C-terminally trehalose-conjugated derivative, to slow down the Aβ aggregation process was investigated by means of different biophysical techniques, including thioflavin T fluorescence, dynamic light scattering, ESI-MS, and NMR spectroscopy. Moreover, we demonstrate that Ac-LPFFD-Th modifies the aggregation features of Aβ and protects neurons from Aβ oligomers' toxic insult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.