This paper illustrates a land consumption map for Italy (year 2017) at a scale 1:1,300,000, and the assessment of its changes (2012-2017). We define land consumption as the replacement of a non-artificial land cover to an artificial land cover, both permanent and no-permanent. The maps are a 10 m spatial resolution raster, produced by photointerpretation of very high resolution images and semiautomatic classification of high resolution remote sensing images. An overall accuracy of 97.7% for the map of 2012 and of 99.66% for the map of 2017 was obtained. The results suggest that the method proposed is appropriate to detect land consumption, both for the urban densification and for the sprawling phenomena, from national to local level. Furthermore, because of the high spatial resolution and the classification scheme adopted, it is suitable for an effective monitoring system, compared to other existing classification systems or monitoring programs.
The study of land cover and land use dynamics are fundamental to understanding the radical changes that human activity is causing locally and globally and to analyse the continuous metamorphosis of landscape. In Europe, the Copernicus Program offers numerous territorial monitoring tools to users and decision makers, such as Sentinel data. This research aims at developing and implementing a land cover mapping and change detection methodology through the classification of Copernicus Sentinel-1 and Sentinel-2 satellite data. The goal is to create a versatile and economically sustainable algorithm capable of rapidly processing large amounts of data, allowing the creation of national-scale products with high spatial resolution and update frequency for operational purposes. Great attention was paid to compatibility with the main activities planned in the near future at the national and European level. In this sense, a land cover classification system consistent with the European specifications of the EAGLE group has been adopted. The methodology involves the definition of distinct sets of decision rules for each of the land cover macro-classes and for the land cover change classes. The classification refers to pixels’ spectral and backscatter characteristics, exploiting the main multi-temporal indices while proposing two new ones: the NDCI to distinguish between broad-leaved and needle-leaved trees, and the Burned Index (BI) to identify burned areas. This activity allowed for the production of a land cover map for 2018 and the change detection related to forest disturbances and land consumption for 2017–2018, reaching an overall accuracy of 83%.
Land consumption is the increase in artificial land cover, which is a major issue for environmental sustainability. In Italy, the Italian Institute for Environmental Protection and Research (ISPRA) and National System for Environmental Protection (SNPA) have the institutional duty to monitor land consumption yearly, through the photointerpretation of high-resolution images. This study intends to develop a methodology in order to produce maps of land consumption, by the use of the semi-automatic classification of multitemporal images, to reduce the effort of photointerpretation in detecting real changes. The developed methodology uses vegetation indices calculated over time series of images and decision rules. Three variants of the methodology were applied to detect the changes that occurred in Italy between the years 2018 and 2019, and the results were validated using ISPRA official data. The results show that the produced maps include large commission errors, but thanks to the developed methodology, the area to be photointerpreted was reduced to 7,300 km2 (2.4 % of Italian surface). The third variant of the methodology provided the highest detection of changes: 70.4% of the changes larger than 100 m2 (the pixel size) and over 84.0% of changes above 500 m2. Omissions are mainly related to single pixel changes, while larger changes are detected by at least one pixel in most of the cases. In conclusion, the developed methodology can improve the detection of land consumption, focusing photointerpretation work over selected areas detected automatically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.