A dynamical equation is derived for the spike emission rate nu(t) of a homogeneous network of integrate-and-fire (IF) neurons in a mean-field theoretical framework, where the activity of the single cell depends both on the mean afferent current (the "field") and on its fluctuations. Finite-size effects are taken into account, by a stochastic extension of the dynamical equation for the nu; their effect on the collective activity is studied in detail. Conditions for the local stability of the collective activity are shown to be naturally and simply expressed in terms of (the slope of) the single neuron, static, current-to-rate transfer function. In the framework of the local analysis, we studied the spectral properties of the time-dependent collective activity of the finite network in an asynchronous state; finite-size fluctuations act as an ongoing self-stimulation, which probes the spectral structure of the system on a wide frequency range. The power spectrum of nu exhibits modes ranging from very high frequency (depending on spike transmission delays), which are responsible for instability, to oscillations at a few Hz, direct expression of the diffusion process describing the population dynamics. The latter "diffusion" slow modes do not contribute to the stability conditions. Their characteristic times govern the transient response of the network; these reaction times also exhibit a simple dependence on the slope of the neuron transfer function. We speculate on the possible relevance of our results for the change in the characteristic response time of a neural population during the learning process which shapes the synaptic couplings, thereby affecting the slope of the transfer function. There is remarkable agreement of the theoretical predictions with simulations of a network of IF neurons with a constant leakage term for the membrane potential.
The original protocol of Paired Associative Stimulation (PAS) in humans implies repetitive cortical and peripheral nerve stimuli, delivered at specific inter-stimulus intervals, able to elicit non-invasively long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity in the human motor cortex. PAS has been designed to drive cortical LTP/LTD according to the Hebbian rule of associative plasticity. Over the last two decades, a growing number of researchers have increasingly used the PAS technique to assess cortical associative plasticity in healthy humans and in patients with movement disorders and other neuropsychiatric diseases. The present review covers the physiology, pharmacology, pathology and motor effects of PAS. Further sections of the review focus on new protocols of "modified PAS" and possible future application of PAS in neuromorphic circuits designed for brain-computer interface.
Cognitive functions like motor planning rely on the concerted activity of multiple neuronal assemblies underlying still elusive computational strategies. During reaching tasks, we observed stereotyped sudden transitions (STs) between low and high multiunit activity of monkey dorsal premotor cortex (PMd) predicting forthcoming actions on a single-trial basis. Occurrence of STs was observed even when movement was delayed or successfully canceled after a stop signal, excluding a mere substrate of the motor execution. An attractor model accounts for upward STs and high-frequency modulations of field potentials, indicative of local synaptic reverberation. We found in vivo compelling evidence that motor plans in PMd emerge from the coactivation of such attractor modules, heterogeneous in the strength of local synaptic self-excitation. Modules with strong coupling early reacted with variable times to weak inputs, priming a chain reaction of both upward and downward STs in other modules. Such web of "flip-flops" rapidly converged to a stereotyped distributed representation of the motor program, as prescribed by the long-standing theory of associative networks.
A simulation procedure is described for making feasible large-scale simulations of recurrent neural networks of spiking neurons and plastic synapses. The procedure is applicable if the dynamic variables of both neurons and synapses evolve deterministically between any two successive spikes. Spikes introduce jumps in these variables, and since spike trains are typically noisy, spikes introduce stochasticity into both dynamics. Since all events in the simulation are guided by the arrival of spikes, at neurons or synapses, we name this procedure event-driven. The procedure is described in detail, and its logic and performance are compared with conventional (synchronous) simulations. The main impact of the new approach is a drastic reduction of the computational load incurred upon introduction of dynamic synaptic efficacies, which vary organically as a function of the activities of the pre- and postsynaptic neurons. In fact, the computational load per neuron in the presence of the synaptic dynamics grows linearly with the number of neurons and is only about 6% more than the load with fixed synapses. Even the latter is handled quite efficiently by the algorithm. We illustrate the operation of the algorithm in a specific case with integrate-and-fire neurons and specific spike-driven synaptic dynamics. Both dynamical elements have been found to be naturally implementable in VLSI. This network is simulated to show the effects on the synaptic structure of the presentation of stimuli, as well as the stability of the generated matrix to the neural activity it induces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.