The geometry of the Apennine fold-andthrust belt has been strongly infl uenced by the original architecture of the Adria paleo margin. In the Central Apennines, pre-thrusting normal faults (pre-orogenic Permian(?)/TriassicJurassic and synorogenic Neogene) were reactivated with compressional kinematics during the Neogene-Quaternary orogenesis.We present a study on the control of preexist ing extensional faults on thrust tectonics in the Central Apennines. We describe positive inversion geometries of some salient fold-and-thrust structures (Setteporte, the Sabini Mountains, the Sibillini Mountains, Montagna dei Fiori, the Gran Sasso range, Maiella Mountain, and Casoli-Bomba) by integrating surface geological data and seismic-line interpretation. In these structures, different styles of fault reactivation depend on their orientation with respect to the subsequent compressional NE-SW-trending stress fi eld. The NW-SE-and WNW-ESEtrending pre-thrusting normal faults in the backlimbs of the anticlines were displaced and passively translated in the hangingwall blocks of the thrust planes, thus exhibiting a classical shortcut geometry (shortcut anticlines). Differently, pre-orogenic normal faults in the N-S-trending anticlines were reactivated in a transpressive deformational context, as docu mented by the mainly dip-slip and strike-slip kinematics along the thrusts and back thrusts, respectively (reacti vation anticlines).The cases studied document differences in geometry in fold-and-thrust structures related to the trend of preexisting extensional faults, showing that different reactivation geom etries linked to the same inversion event can coexist at regional scale in curved foldand-thrust belts. The proposed inversion tectonic model and the resulting geometry of the fold-and-thrust belt could possibly be applied to analogous orogenic belts.
Hydrothermal dolomite (HTD) bodies are known as high-quality hydrocarbon reservoirs; however few studies focus on the geometry and distribution of reservoir characteristics. Across the platform-to-basin transition of the Ramales Platform, fault-controlled HTD bodies are present. Three kinds of bodies can be distinguished based on their morphology, that is, elongated HTD corridors, a massive HTD body (Pozalagua body) and an HTD-cemented breccia body. The differences in size and shape of the HTD bodies can be attributed to differences in local structural setting. For the Pozalagua body, an additional sedimentological control is invoked to explain the difference in HTD geometry.A (geo)-statistical investigation of the reservoir characteristics in the Pozalagua body revealed that the HTD types (defined based on their texture) show spatial clustering controlled by the orientation of faults, joints and the platform edge. Porosity and permeability values are distributed in clusters of high and low values; however, they are not significantly different for the three HTD types. Two dolomitization phases (i.e. ferroan and non-ferroan) can be observed in all HTD bodies. In general, the HTDs resulting from the second non-ferroan dolomitization phase have lower porosity values. No difference in permeability is found for the ferroan and non-ferroan dolomites.
Positive structural inversion within foreland domains ahead of thrust belts can create structures with significant hydrocarbon potential in mature and underexplored areas. Within this context, the Adriatic region represents a well-established hydrocarbon province constituting a foreland domain bounded by the Apennines, Southern Alps, and Dinaric fold-and-thrust belts. Newly reprocessed regional 2D seismic data and a renewed exploration interest in the area motivate a reappraisal of the regional structure and stratigraphy of the deformed Central Adriatic region of Italy (i.e., the Mid-Adriatic Ridge). Here, we developed and discussed examples of inversion structures that have different structural styles. The structural interpretations displayed on time-to-depth converted profiles had been validated by 2D structural-kinematic balancing and forward modeling. Our aim was to better define the geometry, style, and timing of the analyzed inversion-related folds. Positive inversion structures appeared locally as asymmetric harpoon-shaped anticlines riding over high-angle blind thrusts. More commonly, inversion structures were symmetric anticlines formed above conjugate faults. Retrodeformed cross sections showed that positive inversion involved symmetric graben and asymmetric half-graben that originated during the Triassic and Jurassic. That these inversion structures developed during basement-involved thrusting, as suggested for the Adriatic in general, was consistent with forward modeling. Regionally, the contractional structures belonging to the Mid-Adriatic Ridge can be explained in terms of intraplate deformation that chiefly acted through reactivation of Mesozoic normal faults.
+ Offshore Croatia is a relatively underexplored area with no oilfields currently on production. Exploration commenced in 1970 and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.