Abstract. This paper deals with a Boltzmann-type kinetic model describing the interplay between vehicle dynamics and safety aspects in vehicular traffic. Sticking to the idea that the macroscopic characteristics of traffic flow, including the distribution of the driving risk along a road, are ultimately generated by one-to-one interactions among drivers, the model links the personal (i.e., individual) risk to the changes of speeds of single vehicles and implements a probabilistic description of such microscopic interactions in a Boltzmann-type collisional operator. By means of suitable statistical moments of the kinetic distribution function, it is finally possible to recover macroscopic relationships between the average risk and the road congestion, which show an interesting and reasonable correlation with the well-known free and congested phases of the flow of vehicles.
Statistical mechanics points out as fluctuations have a relevant role for systems near critical points. We study the effect of traffic fluctuations and the transition to congested states for a stochastic dynamical model of traffic on a road network. The model simulates a finite population that moves from one road to another according to random transition probabilities. In such a way, we mimic the traffic fluctuations due to the granular feature of traffic and the dynamics at the crossing points. Then the amplitude of traffic flow fluctuations is proportional to the average flow as suggested by empirical observations. Assuming a parabolic shaped flow-density relation, there exists an unstable critical point for the road dynamics and the system can perform a phase transition to a congested state, where some roads reach their maximal capacity. We apply a statistical physics approach to study the onset congestion and we characterize analytically the relation between the fluctuations amplitude and the appearance of congested nodes. We verify the results by means of numerical simulations on a Manhattan-like road network. Moreover we point out the existence of oscillating regimes, where traffic oscillations back propagate on the road network, whose onset depend sensitively from the traffic fluctuations and that have a strong influence on the hysteresis cycles of the systems when the traffic load is modulated. The comparison between the numerical simulations and the empirical traffic data recorded by an inductive-loop traffic detector system (MTS system) on the county roads of the Emilia Romagna region in Italy is shortly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.