Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts putatively involved in stomatal movements. This transcriptomic study has yielded promising candidate genes that merit further functional studies to confirm their involvement in drought tolerance and recovery. Together, our results contribute to a better understanding of the coordinated responses taking place under drought stress and recovery in adult plants of tomato.
One of the greatest challenges for agricultural science in the 21st century is to improve yield stability through the progressive development of superior cultivars. The increasing numbers of infectious plant diseases that are caused by plant-pathogens make it ever more necessary to develop new strategies for plant disease resistance breeding. Targeted genome engineering allows the introduction of precise modifications directly into a commercial variety, offering a viable alternative to traditional breeding methods. Genome editing is a powerful tool for modifying crucial players in the plant immunity system. In this work, we propose and discuss genome-editing strategies and targets for improving resistance to phytopathogens. First of all, we present the opportunities to rewrite the effector-target sequence for avoiding effector-target molecular interaction and also to modify effector-target promoters for increasing the expression of target genes involved in the resistance process. In addition, we describe potential approaches for obtaining synthetic R-genes through genome-editing technologies (GETs). Finally, we illustrate a genome editing flowchart to modify the pathogen recognition sites and engineer an R-gene that mounts resistance to some phylogenetically divergent pathogens. GETs potentially mark the beginning of a new era, in which synthetic biology affords a basis for obtaining a reinforced plant defense system. Nowadays it is conceivable that by modulating the function of the major plant immunity players, we will be able to improve crop performance for a sustainable agriculture.
BackgroundThe powdery mildew disease affects thousands of plant species and arguably represents the major fungal threat for many Cucurbitaceae crops, including melon (Cucumis melo L.), watermelon (Citrullus lanatus L.) and zucchini (Cucurbita pepo L.). Several studies revealed that specific members of the Mildew Locus O (MLO) gene family act as powdery mildew susceptibility factors. Indeed, their inactivation, as the result of gene knock-out or knock-down, is associated with a peculiar form of resistance, referred to as mlo resistance.ResultsWe exploited recently available genomic information to provide a comprehensive overview of the MLO gene family in Cucurbitaceae. We report the identification of 16 MLO homologs in C. melo, 14 in C. lanatus and 18 in C. pepo genomes. Bioinformatic treatment of data allowed phylogenetic inference and the prediction of several ortholog pairs and groups. Comparison with functionally characterized MLO genes and, in C. lanatus, gene expression analysis, resulted in the detection of candidate powdery mildew susceptibility factors. We identified a series of conserved amino acid residues and motifs that are likely to play a major role for the function of MLO proteins. Finally, we performed a codon-based evolutionary analysis indicating a general high level of purifying selection in the three Cucurbitaceae MLO gene families, and the occurrence of regions under diversifying selection in candidate susceptibility factors.ConclusionsResults of this study may help to address further biological questions concerning the evolution and function of MLO genes. Moreover, data reported here could be conveniently used by breeding research, aiming to select powdery mildew resistant cultivars in Cucurbitaceae.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2325-3) contains supplementary material, which is available to authorized users.
Cucurbit crops are economically important worldwide. One of the most serious threats to cucurbit production is Zucchini yellow mosaic virus (ZYMV). Several resistant accessions were identified in Cucurbita moschata and their resistance was introgressed into Cucurbita pepo. However, the mode of inheritance of ZYMV resistance in C. pepo presents a great challenge to attempts at introgressing resistance into elite germplasm. The main goal of this work was to analyze the inheritance of ZYMV resistance and to identify markers associated with genes conferring resistance. An Illumina GoldenGate assay allowed us to assess polymorphism among nine squash genotypes and to discover six SNPs putatively associated with ZYMV resistance/susceptibility. Two F2 and three BC1 populations obtained from crossing the ZYMV-resistant Accession 381e with two susceptible ones, the zucchini 'True French' and the cocozelle 'San Pasquale', were assayed for ZYMV Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation resistance. Molecular analysis suggested a close relationship between SNP1 and resistance, which was confirmed using High Resolution Melt (HRM) and a CAPS marker. Distorted segregation in populations segregating for resistance was observed for two SNPs putatively associated with two other genes necessary for expression of resistance. A functional prediction of proteins involved in the resistance mechanisms was performed on genome scaffolds containing the three SNPs of interest. Indeed, 16 full-length Pathogen Recognition Genes (PRGs) were identified around the three SNP markers. In particular, we discovered that two nucleotide-binding site leucine-rich repeat (NBS-LRR) protein-encoding genes were associated closely with the SNP1 marker. The investigation of ZYMV resistance in squash populations and the genomic analysis performed in this work could be useful for better directing the introgression of disease resistance into elite C. pepo germplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.