Abstract. This study presents a model of chlorophyll and primary production in the pelagic Mediterranean Sea. A 3-D-biogeochemical model (OPATM-BFM) was adopted to explore specific system characteristics and quantify dynamics of key biogeochemical variables over a 6 yr period, from 1999 to 2004. We show that, on a basin scale, the Mediterranean Sea is characterised by a high degree of spatial and temporal variability in terms of primary production and chlorophyll concentrations. On a spatial scale, important horizontal and vertical gradients have been observed. According to the simulations over a 6 yr period, the developed model correctly simulated the climatological features of deep chlorophyll maxima and chlorophyll west-east gradients, as well as the seasonal variability in the main offshore regions that were studied. The integrated net primary production highlights north-south gradients that differ from surface net primary production gradients and illustrates the importance of resolving spatial and temporal variations to calculate basin-wide budgets and their variability. According to the model, the western Mediterranean, in particular the Alboran Sea, can be considered mesotrophic, whereas the eastern Mediterranean is oligotrophic. During summer stratified period, notable differences between surface net primary production variability and the corresponding vertically integrated production rates have been identified, suggesting that care must be taken when inferring productivity in such systems from satellite observations alone. Finally, specific simulations that were designed to explore the role of external fluxes and light penetration were performed. The subsequent results show that the effects of atmospheric and terrestrial nutrient loads on the total integrated net primary production account for less than 5 % of the its annual value, whereas an increase of 30 % in the light extinction factor impacts primary production by approximately 10 %.
This study presents a model of chlorophyll and primary production in the pelagic Mediterranean Sea. A 3-D-ecosystem model (OPATM-BFM) was adopted to explore specific system characteristics and quantify key biogeochemical variables covering a 6-yr period, from 1999 to 2004. <br><br> We show that, on a basin scale, the Mediterranean Sea is characterised by a high degree of spatial and temporal variability in terms of primary production and chlorophyll concentrations. On a spatial scale, important horizontal and vertical gradients have been observed. In particular, notable differences between surface net primary production variability and the corresponding vertically integrated production rates have been identified, suggesting that care must be taken when inferring productivity in such systems from satellite observations alone. The present study indicates that seasonal variability dominates inter-annual differences. <br><br> According to the simulations over a 6-yr period, the developed model correctly simulated the climatological features of deep chlorophyll maxima and chlorophyll west-east gradients, as well as the seasonal variability in the primary offshore regions that were studied. The integrated net primary production highlights north-south gradients that differ from surface net primary production gradients and illustrates the importance of adopting a spatial and temporal description to calculate basin-wide budgets and their variabilities. According to the model, the western Mediterranean, in particular the Alboran Sea, can be considered mesotrophic, whereas the eastern Mediterranean is oligotrophic. <br><br> Finally, specific simulations that were designed to explore the role of ecosystem boundary conditions were performed. The subsequent results show that the effects of atmospheric and terrestrial nutrient loads on the total integrated net primary production account for less than 5 % of the annual budget, whereas an increase of 30 % in the light extinction factor impacts primary production by approximately 10 %
Abstract. The paper provides a basin-scale assessment of the spatiotemporal distribution of alkalinity in the Mediterranean Sea. The assessment is made by integrating the available observations into a 3-D transport-biogeochemical model.The results indicate the presence of complex spatial patterns: a marked west-to-east surface gradient of alkalinity is coupled to secondary negative gradients: (1) from marginal seas (Adriatic and Aegean Sea) to the eastern Mediterranean Sea and (2) from north to south in the western region. The west-east gradient is related to the mixing of Atlantic water entering from the Strait of Gibraltar with the high-alkaline water of the eastern sub-basins, which is correlated to the positive surface flux of evaporation minus precipitation. The north-to-south gradients are related to the terrestrial input and to the input of the Black Sea water through the Dardanelles. In the surface layers, alkalinity has a relevant seasonal cycle (up to 40 µmol kg −1 ) that is driven by physical processes (seasonal cycle of evaporation and vertical mixing) and, to a minor extent, by biological processes. A comparison of alkalinity vs. salinity indicates that different regions present different relationships: in regions of freshwater influence, the two quantities are negatively correlated due to riverine alkalinity input, whereas they are positively correlated in open sea areas of the Mediterranean Sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.