Abstract. We investigate the dephasing suffered by a nonrelativistic quantum particle within a conformally fluctuating spacetime geometry. Starting from a minimally coupled massive Klein-Gordon field, the low velocity limit yields an effective Schrödinger equation where the wave function couples to gravity through an effective nonlinear potential induced by the conformal fluctuations. The quantum evolution is studied through a Dyson expansion scheme up to second order. We show that only the nonlinear part of the potential can induce dephasing. This happens through an exponential decay of the off diagonal terms of the particle density matrix. The bath of conformal radiation is modeled in 3-dimensions and its statistical properties are described in general in terms of a power spectral density. The case of a Lorentz invariant spectral density, allowing to model vacuum fluctuations at a low energy domain, is investigated and a general formula describing the loss of coherence derived. This depends quadratically on the particle mass and on the inverse cube of a typical particle dependent cutoff scale. Finally, the possibilities for experimental verification are discussed. It is shown that current interferometry experiments cannot detect such an effect. However this conclusion may improve by using high mass entangled quantum states.
We identify a new dynamical mechanism for a strong scalar gravitational field effect. To illustrate this mechanism, we investigate the parametric excitation and emission of scalar gravitational waves by a radially pulsating model neutron star
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.