Visual search attracted great interest because its ease under certain circumstances seemed to provide a way to understand how properties of early visual cortical areas could explain complex perception without resorting to higher order psychological or neurophysiological mechanisms. Furthermore, there was the hope that properties of visual search itself might even reveal new cortical features or dimensions. The shortcomings of this perspective suggest that we abandon fixed canonical elementary particles of vision as well as a corresponding simple to complex cognitive architecture for vision. Instead recent research has suggested a different organization of the visual brain with putative high level processing occurring very rapidly and often unconsciously. Given this outlook, we reconsider visual search under the broad category of recognition tasks, each having different trade-offs for computational resources, between detail and scope. We conclude noting recent trends showing how visual search is relevant to a wider range of issues in cognitive science, in particular to memory, decision making, and reward.
Neuropsychological evidence suggests that face recognition based on configural (holistic) information can occur in isolation from recognition based on local feature cues. The present study shows that configural processing can be isolated experimentally in normal subjects. A phenomenon is reported that exists only for upright whole faces, namely categorical perception (CP) of face identity in noise. Three discrimination tasks (ABX, better likeness, and similarity ratings) were used to test for perceptual distortion across the category boundary predicted from binary classification of face morphs. Noise was added such that any single local region provided unreliable cues to identity. Under these conditions, CP was found for upright faces but not for inverted faces or single features, even with more than 10,000 trials. The CP-in-noise signature phenomenon was then used to show that configural processing survives image plane rotations of 45 degrees-90 degrees.
We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.
The present study deals with the unsteady flow simulation of trailing edge film cooling on the pressure side cut back of gas turbine airfoils. Before being ejected tangentially on the inclined cut-back surface, the coolant air passes a partly converging passage that is equipped with turbulators such as pin fins and ribs. The film mixing process on the cut back is complicated. In the near slot region, due to the turbulators and the blunt pressure side lip, turbulence is expected to be anisotropic. Furthermore, unsteady flow phenomena like vortex shedding from the pressure side lip might influence the mixing process (i.e., the film cooling effectiveness on the cut-back surface). In the current study, three different internal cooling designs are numerically investigated starting from the steady RaNS solution, and ending with unsteady detached eddy simulations (DES). Blowing ratios M = 0.5; 0.8; 1.1 are considered. To obtain both, film cooling effectiveness as well as heat transfer coefficients on the cut-back surface, the simulations are performed using adiabatic and diabatic wall boundary conditions. The DES simulations give a detailed insight into the unsteady film mixing process on the trailing edge cut back, which is indeed influenced by vortex shedding from the pressure side lip. Furthermore, the time averaged DES results show very good agreement with the experimental data in terms of film cooling effectiveness and heat transfer coefficients. Transactions of the ASME Downloaded From: http://turbomachinery.asmedigitalcollection.asme.org/ on 09/18/2013 Terms of Use: http://asme.org/terms Journal of Turbomachinery APRIL 2006, Vol. 128 / 299 Downloaded From: http://turbomachinery.asmedigitalcollection.asme.org/ on 09/18/2013 Terms of Use: http://asme.org/terms
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.