A printed Log-periodic dipole array (LPDA) is presented, operating over the C, X and Ku bands. The antenna feeding structure consists of two coaxial cables, in order to realize an infinite balun which provides the required broadband input matching. The second coaxial cable mirrors the first one, connected to the antenna input, and is capable of both stabilizing the antenna phase center and improving the radiation pattern. The antenna has been designed using CST Microwave Studio, with an useful frequency range of 4-18 GHz. Moreover, both simulated and measured results show that the proposed LPDA can be successfully used as an Ultra Wideband Antenna in the range 4.25-13.25 GHz, in which its phase center remains stable.
The Sardinia Radio Telescope (SRT) is a 64-m, fully-steerable single-dish radio telescope that was recently commissioned both technically and scientifically with regard to the basic observing modes. In order to improve the scientific capability and cover all the requirements for an advanced single-dish radio telescope, we developed the SArdinia Roach2-based Digital Architecture for Radio Astronomy (SARDARA), a wide-band, multi-feed, general-purpose, and reconfigurable digital platform, whose preliminary setup was used in the early science program of the SRT in 2016. In this paper, we describe the backend both in terms of its scientific motivation and technical design, how it has been interfaced with the telescope environment during its development and, finally, its scientific commissioning in different observing modes with single-feed receivers.
A dual-band printed Log-periodic dipole array (LPDA) antenna for wireless communications, designed on a lowcost PET substrate and implemented by inkjet-printing conductive ink, is presented. The proposed antenna can be used for wireless communications both within the UHF (2.4-2.484 GHz) and SHF (5.2-5.8 GHz) wireless frequency bands, and presents a good out-of-band rejection, without the need of stopband filters. The antenna has been designed using a general purpose 3D CAD, CST Microwave Studio, and then realized. Measured results are in very good agreement with simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.