Presently, a very large number of public and private data sets are available from local governments. In most cases, they are not semantically interoperable and a huge human effort would be needed to create integrated ontologies and knowledge base for smart city. Smart City ontology is not yet standardized, and a lot of research work is needed to identify models that can easily support the data reconciliation, the management of the complexity, to allow the data reasoning. In this paper, a system for data ingestion and reconciliation of smart cities related aspects as road graph, services available on the roads, traffic sensors etc., is proposed. The system allows managing a big data volume of data coming from a variety of sources considering both static and dynamic data. These data are mapped to a smart-city ontology, called KM4City (Knowledge Model for City), and stored into an RDF-Store where they are available for applications via SPARQL queries to provide new services to the users via specific applications of public administration and enterprises. The paper presents the process adopted to produce the ontology and the big data architecture for the knowledge base feeding on the basis of open and private data, and the mechanisms adopted for the data verification, reconciliation and validation. Some examples about the possible usage of the coherent big data knowledge base produced are also offered and are accessible from the RDF-store and related services. The article also presented the work performed about reconciliation algorithms and their comparative assessment and selection.
The specification of reactive and real-time systems must be supported by formal, mathematically-founded methods in order to be satisfactory and reliable. Temporal logics have been used to this end for several years. Temporal logics allow the specification of system behavior in terms of logical formulas, including temporal constraints, events, and the relationships between the two. In the last ten years, temporal logics have reached a high degree of expressiveness. Most of the temporal logics proposed in the last few years can be used for specifying reactive systems, although not all are suitable for specifying real-time systems. In this paper we present a series of criteria for assessing the capabilities of temporal logics for the specification, validation, and verification of real-time systems. Among the criteria are the logic's expressiveness, the logic's order, presence of a metric for time, the type of temporal operators, the fundamental time entity, and the structure of time. We examine a selection of temporal logics proposed in the literature. To make the comparison clearer, a set of typical specifications is identified and used with most of the temporal logics considered, thus presenting the reader with a number of real examples.
In recent years, smart cities have been significantly developed and have greatly expanded their potential. In fact, novel advancements to the Internet of things (IoT) have paved the way for new possibilities, representing a set of key enabling technologies for smart cities and allowing the production and automation of innovative services and advanced applications for the different city stakeholders. This paper presents a review of the research literature on IoT-enabled smart cities, with the aim of highlighting the main trends and open challenges of adopting IoT technologies for the development of sustainable and efficient smart cities. This work first provides a survey on the key technologies proposed in the literature for the implementation of IoT frameworks, and then a review of the main smart city approaches and frameworks, based on classification into eight domains, which extends the traditional six domain classification that is typically adopted in most of the related works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.