Background The use of complementary and alternative medicine (CAM) among cancer patients is widespread and mostly self-administrated. Today, one of the most relevant topics is the nondisclosure of CAM use to doctors. This general lack of communication exposes patients to dangerous behaviors and to less reliable information channels, such as the Web. The Italian context scarcely differs from this trend. Today, we are able to mine and analyze systematically the unstructured information available in the Web, to get an insight of people’s opinions, beliefs, and rumors concerning health topics. Objective Our aim was to analyze Italian Web conversations about CAM, identifying the most relevant Web sources, therapies, and diseases and measure the related sentiment. Methods Data have been collected using the Web Intelligence tool ifMONITOR. The workflow consisted of 6 phases: (1) eligibility criteria definition for the ifMONITOR search profile; (2) creation of a CAM terminology database; (3) generic Web search and automatic filtering, the results have been manually revised to refine the search profile, and stored in the ifMONITOR database; (4) automatic classification using the CAM database terms; (5) selection of the final sample and manual sentiment analysis using a 1-5 score range; (6) manual indexing of the Web sources and CAM therapies type retrieved. Descriptive univariate statistics were computed for each item: absolute frequency, percentage, central tendency (mean sentiment score [MSS]), and variability (standard variation σ). Results Overall, 212 Web sources, 423 Web documents, and 868 opinions have been retrieved. The overall sentiment measured tends to a good score (3.6 of 5). Quite a high polarization in the opinions of the conversation partaking emerged from standard variation analysis (σ≥1). In total, 126 of 212 (59.4%) Web sources retrieved were nonhealth-related. Facebook (89; 21%) and Yahoo Answers (41; 9.7%) were the most relevant. In total, 94 CAM therapies have been retrieved. Most belong to the “biologically based therapies or nutrition” category: 339 of 868 opinions (39.1%), showing an MSS of 3.9 (σ=0.83). Within nutrition, “diets” collected 154 opinions (18.4%) with an MSS of 3.8 (σ=0.87); “food as CAM” overall collected 112 opinions (12.8%) with a MSS of 4 (σ=0.68). Excluding diets and food, the most discussed CAM therapy is the controversial Italian “Di Bella multitherapy” with 102 opinions (11.8%) with an MSS of 3.4 (σ=1.21). Breast cancer was the most mentioned disease: 81 opinions of 868. Conclusions Conversations about CAM and cancer are ubiquitous. There is a great concern about the biologically based therapies, perceived as harmless and useful, under-rating all risks related to dangerous interactions or malnutrition. Our results can be useful to doctors to be aware of the implications of these beliefs for the clinical practice. Web conversation exploitation could be a strategy to gain insights of people’s perspective for other controversial topics.
The concepts of the participative Web, mass collaboration, and collective intelligence grow out of a set of Web methodologies and technologies which improve interaction with users in the development, rating, and distribution of user-generated content. UGC is one of the cornerstones of Web 2.0 and is the core concept of several different kinds of applications. UGC suggests new value chains and business models; it proposes innovative social, cultural, and economic opportunities and impacts. However, several open issues concerning semantic understanding and managing of digital information available on the Web, like information overload, heterogeneity of the available content, and effectiveness of retrieval are still unsolved. The research experiences we present in this chapter, described in literature or achieved in our research laboratory, are aimed at reducing the gap between users and information understanding, by means of collaborative and cognitive filtering, sentiment analysis, information extraction, and knowledge conceptual modeling.
In a previous study, we manually identified seven categories (verbs, non-verbs, modal verbs in the simple present, modal verbs in the conditional mood, if, uncertain questions, and epistemic future) of Uncertainty Markers (UMs) in a corpus of 80 articles from the British Medical Journal randomly sampled from a 167-year period (1840–2007). The UMs detected on the base of an epistemic stance approach were those referring only to the authors of the articles and only in the present. We also performed preliminary experiments to assess the manual annotated corpus and to establish a baseline for the UMs automatic detection. The results of the experiments showed that most UMs could be recognized with good accuracy, except for the if-category, which includes four subcategories: if-clauses in a narrow sense; if-less clauses; as if/as though; if and whether introducing embedded questions. The unsatisfactory results concerning the if-category were probably due to both its complexity and the inadequacy of the detection rules, which were only lexical, not grammatical. In the current article, we describe a different approach, which combines grammatical and syntactic rules. The performed experiments show that the identification of uncertainty in the if-category has been largely double improved compared to our previous results. The complex overall process of uncertainty detection can greatly profit from a hybrid approach which should combine supervised Machine learning techniques with a knowledge-based approach constituted by a rule-based inference engine devoted to the if-clause case and designed on the basis of the above mentioned epistemic stance approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.