We explore the importance of magnetic-field-oriented thermal conduction in the interaction of supernova remnant (SNR) shocks with radiative gas clouds and in determining the mass and energy exchange between the clouds and the hot surrounding medium. We perform 2.5-dimensional MHD simulations of a shock impacting on an isolated gas cloud, including anisotropic thermal conduction and radiative cooling; we consider the representative case of a Mach 50 shock impacting on a cloud 10 times denser than the ambient medium. We consider different configurations of the ambient magnetic field and compare MHD models with or without thermal conduction. The efficiency of thermal conduction in the presence of a magnetic field is, in general, reduced with respect to the unmagnetized case. The reduction factor strongly depends on the initial magnetic field orientation, and it is at a minimum when the magnetic field is initially aligned with the direction of the shock propagation. Thermal conduction contributes to the suppression of hydrodynamic instabilities, reducing the mass mixing of the cloud and preserving the cloud from complete fragmentation. Depending on the magnetic field orientation, the heat conduction may determine a significant energy exchange between the cloud and the hot surrounding medium which, while remaining always at levels less than those in the unmagnetized case, leads to a progressive heating and evaporation of the cloud. This additional heating may offset the radiative cooling of some parts of the cloud, preventing the onset of thermal instabilities.
Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims. We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods. To model the full life span of magnetic flux ropes we couple two models. The global non-linear force-free field (GNLFFF) evolution model is used to follow the quasi-static formation of a flux rope. The MHD code ARMVAC is used to simulate the production of a CME through the loss of equilibrium and ejection of this flux rope. Results. We show that the two distinct models may be successfully coupled and that the flux rope is ejected out of our simulation box, where the outer boundary is placed at 2.5 R . The plasma expelled during the flux rope ejection travels outward at a speed of 100 km s −1 , which is consistent with the observed speed of CMEs in the low corona. Conclusions. Our work shows that flux ropes formed in the GNLFFF can lead to the ejection of a mass loaded magnetic flux rope in full MHD simulations. Coupling the two distinct models opens up a new avenue of research to investigate phenomena where different phases of their evolution occur on drastically different time scales.
Context. Phase-mixing of Alfvén waves in the solar corona has been identified as one possible candidate to explain coronal heating. While this scenario is supported by observations of ubiquitous oscillations in the corona carrying sufficient wave energy and by theoretical models that have described the concentration of energy in small scale structures, it is still unclear whether this wave energy can actually be converted into thermal energy in order to maintain the million degree solar corona. Aims. The aim of this work is to assess how much energy can be converted into thermal energy by a phase-mixing process triggered by the propagation of Alfvénic waves in a cylindric coronal structure, such as a coronal loop, and to estimate the impact of this conversion on the coronal heating and thermal structure of the solar corona. Methods. To this end, we run 3D MHD simulations of a magnetised cylinder where the Alfvén speed varies through a boundary shell and a footpoint driver is set to trigger kink modes which mode couple to torsional Alfvén modes in the boundary shell. These Alfvén waves are expected to phase-mix and the system allows us to study the subsequent thermal energy deposition. We run a reference simulation to explain the main process and then we vary simulation parameters, such as the size of the boundary shell, its structure and the persistence of the driver. Results. When we take into consideration high values of magnetic resistivity and strong footpoint drivers, we find i) that phase-mixing leads to a temperature increase of the order of 10 5 K or less, depending on the structure of the boundary shell, ii) that this energy is able to balance the radiative losses only in the localised region involved in the heating, iii) and how the boundary layer and the persistence of the driver influence the thermal structure of the system. Conclusions. Our conclusion is that due to the extreme physical parameters we adopted and the moderate impact on the heating of the system, it is unlikely that phase-mixing can contribute on a global scale to the heating of the solar corona.
Context. Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations now show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. While this is the case, these observations are difficult to interpret in terms of basic physical mechanisms and quantities. To fully understand CMEs we need to compare equivalent quantities derived from both observations and theoretical models. This will aid in bridging the gap between observations and models. Aims. To this end, we aim to produce synthesised AIA observations from simulations of a flux rope ejection. To carry this out we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Methods. We perform a simulation where a flux rope is ejected from the solar corona. From the density and temperature of the plasma in the simulation we synthesise AIA observations. The emission is then integrated along the line of sight using the instrumental response function of AIA. Results. We sythesise observations of AIA in the channels at 304 Å, 171 Å, 335 Å, and 94 Å. The synthesised observations show a number of features similar to actual observations and in particular reproduce the general development of CMEs in the low corona as observed by AIA. In particular we reproduce an erupting and expanding arcade in the 304 Å and 171 Å channels with a high density core. Conclusions. The ejection of a flux rope reproduces many of the features found in the AIA observations. This work is therefore a step forward in bridging the gap between observations and models, and can lead to more direct interpretations of EUV observations in terms of flux rope ejections. We plan to improve the model in future studies in order to perform a more quantitative comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.