A powerful screening by NMR methodology (WaterLOGSY), based on transfer of magnetization from bulk water, for the identification of compounds that interact with target biomolecules (proteins, RNA and DNA fragments) is described. The method exploits efficiently the large reservoir of H2O magnetization. The high sensitivity of the technique reduces the amount of biomolecule and ligands needed for the screening, which constitutes an important requirement for high throughput screening by NMR of large libraries of compounds. Application of the method to a compound mixture against the cyclin-dependent kinase 2 (cdk2) protein is presented.
Abnormal proliferation mediated by disruption of the normal cell cycle mechanisms is a hallmark of virtually all cancer cells. Compounds targeting complexes between cyclin-dependent kinases (CDK) and cyclins, such as CDK2/cyclin A and CDK2/cyclin E, and inhibiting their kinase activity are regarded as promising antitumor agents to complement the existing therapies. From a high-throughput screening effort, we identified a new class of CDK2/cyclin A/E inhibitors. The hit-to-lead expansion of this class is described. X-ray crystallographic data of early compounds in this series, as well as in vitro testing funneled for rapidly achieving in vivo efficacy, led to a nanomolar inhibitor of CDK2/cyclin A (N-(5-cyclopropyl-1H-pyrazol-3-yl)-2-(2-naphthyl)acetamide (41), PNU-292137, IC50 = 37 nM) with in vivo antitumor activity (TGI > 50%) in a mouse xenograft model at a dose devoid of toxic effects.
Water-ligand observed via gradient spectroscopy (WaterLOGSY) represents a powerful method for primary NMR screening in the identification of compounds interacting with macromolecules, including proteins and DNA or RNA fragments. The method is useful for the detection of compounds binding to a receptor with binding affinity in the micromolar range. The Achille's heel of the method, as with all the techniques that detect the ligand resonances, is its inability to identify strong ligands with slow dissociation rates. We show here that the use of a reference compound with a known K(D) in the micromolar range together with properly designed competition binding experiments (c-WaterLOGSY) permits the detection of strong binders. A derived mathematical expression is used for the selection of the appropriate setup NMR experimental conditions and for an approximate determination of the binding constant. The experiment requires low ligand concentration, therefore allowing its application in the identification of potential strong inhibitors that are only marginally soluble. The technique is particularly suitable for rapid screening of chemical mixtures and plant or fungi extracts.
Activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is one the most frequent genetic events in human cancer. A cell-based imaging assay that monitored the translocation of the Akt effector protein, Forkhead box O (FOXO), from the cytoplasm to the nucleus was employed to screen a collection of 33,992 small molecules. The positive compounds were used to screen kinases known to be involved in FOXO translocation. Pyrazolopyrimidine derivatives were found to be potent FOXO relocators as well as biochemical inhibitors of PI3K␣. A combination of virtual screening and molecular modeling led to the development of a structure-activity relationship, which indicated the preferred substituents on the pyrazolopyrimidine scaffold. This leads to the synthesis of ETP-45658, which is a potent and selective inhibitor of phosphoinositide 3-kinases and demonstrates mechanism of action in tumor cell lines and in vivo in treated mice.The phosphoinositide 3-kinase (PI3K) 4 /Akt pathway is activated in a variety of solid and non-solid tumors (1) and therefore is considered as a potential intervention point for anticancer therapeutics. Activation of the pathway is frequently caused by mutations in PI3K␣ that enhance its catalytic activity, leading to the generation of phosphatidyl 3,4,5-trisphosphate (PIP3) (2) or by mutations or deletions in the tumor suppressor PTEN (phosphatase and tensin homolog) that result in its loss of function. PTEN antagonizes the activity of PI3K␣ through the dephosphorylation PIP3 (3). In addition, PI3K␣ can be activated by mutations in certain receptor-tyrosine kinases as well as by mutations in the oncogene KRAS (4, 5).The PIP3 generated by activation of PI3K␣ or sustained by the inactivation of PTEN binds to a subset of lipid-binding domains in downstream targets such as the pleckstrin homology (PH) domain of the oncogene Akt (6, 7); thereby, recruiting it to the plasma membrane. Once at the plasma membrane, Akt can be activated (8, 9). When active, Akt phosphorylates several effector molecules including the Forkhead box O (FOXO) transcription factors (10, 11). FOXO proteins are a family of conserved polypeptides that bind to DNA as a monomer and activate the transcription of genes that are involved in numerous biologically relevant processes such as metabolism, differentiation, proliferation, longevity, and apoptosis (12, 13). Akt phosphorylates FOXO proteins at three conserved consensus sites, which leads to conformational changes that facilitate CRM-1-mediated nuclear export (14, 15). Nuclear FOXO proteins function as regulators of transcription, whereas cytoplasmic FOXO proteins are considered inactive. It is well established that FOXO is negatively regulated by various proliferative and antiapoptotic signaling pathways that activate the PI3K/Akt signaling cascade (11). Therefore, we chose to employ a high content imaging approach to monitor the nucleocytoplasmic translocation of a GFP-FOXO3a fusion protein in U2OS cells (U2foxRELOC) (16,17) as the readout for biological inhibition...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.