A v ersion of the Atiyah-Patodi-Singer index theorem is proved for general families of Dirac operators on compact manifolds with boundary. T h e v anishing of the analytic index of the boundary family, i n K 1 of the base, allows us to de ne, through an explicit trivialization, a smooth family of boundary conditions of generalized Atiyah-Patodi-Singer type. The calculus of b-pseudodi erential operators is then employed to establish the family index formula. A relative index formula, describing the e ect of changing the choice of the trivialization, is also given. In case the boundary family is invertible the form of the index theorem obtained by B i s m ut and Cheeger is recovered.
A. -In this paper we prove a variety of results about the signature operator on Witt spaces. First, we give a parametrix construction for the signature operator on any compact, oriented, stratified pseudomanifold X which satisfies the Witt condition. This construction, which is inductive over the 'depth' of the singularity, is then used to show that the signature operator is essentially selfadjoint and has discrete spectrum of finite multiplicity, so that its index-the analytic signature of X--is well-defined. This provides an alternate approach to some well-known results due to Cheeger. We then prove some new results. By coupling this parametrix construction to a C * r Γ Mishchenko bundle associated to any Galois covering of X with covering group Γ, we prove analogues of the same analytic results, from which it follows that one may define an analytic signature index class as an element of the K-theory of C * r Γ. We go on to establish in this setting and for this class the full range of conclusions which sometimes goes by the name of the signature package. In particular, we prove a new and purely topological theorem, asserting the stratified homotopy invariance of the higher signatures of X, defined through the homology L-class of X, whenever the rational assembly mapR. -Dans cet article nous prouvons plusieurs résultats pour l'opérateur de la signature sur un espace de Witt X compact orienté quelconque. Nous construisons une paramétrix de l'opérateur de la signature de X en raisonnant par récurrence sur la profondeur de X et en utilisant une analyse très fine de l'opérateur normal (près d'une strate). Ceci nous permet de montrer que le domaine maximal de l'opérateur de la signature est compactement inclus dans l'espace L 2 correspondant. On peut alors (re)démontrer que l'opérateur de la signature est essentiellement self-adjoint et a un spectre L 2 discret de multiplicité finie de sorte que son indice est bien défini. Nous donnons donc une nouvelle démonstration de certains résultats dus à Jeff Cheeger. Nous considérons ensuite le cas où X est muni d'un revêtement galoisien de groupe Γ. Nous utilisons alors nos constructions pour définir la classe d'indice de signature analytique à valeurs dans le groupe de K-théorie K * (C * r Γ). Nous généralisons dans cette situation singulière la plupart des résultats connus dans le cas où X est lisse. C'est ce qu'on appelle le « forfait signature ». En particulier, nous prouvons un nouveau théorème, purement topologique, qui permet de prouver l'invariance par homotopie stratifiée des hautes signatures de X (définies à l'aide de la L−classe homologique de X) pourvu que l'application d'assemblement rationnelle K * (BΓ) ⊗ Q → K * (C * r Γ) ⊗ Q soit injective.
In this paper, we study the space of metrics of positive scalar curvature using methods from coarse geometry.Given a closed spin manifold M with fundamental group Γ, Stephan Stolz introduced the positive scalar curvature exact sequence.Higson and Roe introduced a K-theory exact sequence → K * (BΓ) α
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.