Permanent magnet machines with segmented stator cores are affected by additional harmonic components of the cogging torque which cannot be minimized by conventional methods adopted for one-piece stator machines. In this study, a novel approach is proposed to minimize the cogging torque of such machines. This approach is based on the design of multiple independent shapes of the tooth tips through a topological optimization. Theoretical studies define a design formula that allows to choose the number of independent shapes to be designed, based on the number of stator core segments. Moreover, a computationally-efficient heuristic approach based on genetic algorithms and artificial neural network-based surrogate models solves the topological optimization and finds the optimal tooth tips shapes. Simulation studies with the finite element method validates the design formula and the effectiveness of the proposed method in suppressing the additional harmonic components. Moreover, a comparison with a conventional heuristic approach based on a genetic algorithm directly coupled to finite element analysis assesses the superiority of the proposed approach. Finally, a sensitivity analysis on assembling and manufacturing tolerances proves the robustness of the proposed design method.
Parameter identification of permanent magnet synchronous machines (PMSMs) represents a well-established research area. However, parameter estimation of multiple running machines in large-scale applications has not yet been investigated. In this context, a flexible and automated approach is required to minimize complexity, costs, and human interventions without requiring machine information. This paper proposes a novel identification strategy for surface PMSMs (SPMSMs), highly suitable for large-scale systems. A novel multistep approach using measurement data at different operating conditions of the SPMSM is proposed to perform the parameter identification without requiring signal injection, extra sensors, machine information, and human interventions. Thus, the proposed method overcomes numerous issues of the existing parameter identification schemes. An IoT/cloud architecture is designed to implement the proposed multistep procedure and massively perform SPMSM parameter identifications. Finally, hardware-in-the-loop results show the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.