Multiple sclerosis (MS) is a complex disease that seems to depend on several pathophysiological processes. Because of its varied clinical presentation, natural history, and response to therapeutic interventions, MS can be considered to be a group of diseases that have not been yet characterized, thus resulting in difficult evaluation of prognosis. In the last few years, the role of autoAbs in MS has been reevaluated, and, therefore, their identification as specific biomarkers became a relevant target. In this paper, we demonstrate that an aberrant N-glucosylation is a fundamental determinant of autoAb recognition in MS. Thus, we developed CSF114(Glc), an antigenic probe accurately measuring IgM autoAbs in the sera of a patient population, as disease biomarker. The relevance of CSF114(Glc) is demonstrated by its clinical application and correlation with disease activity and prognosis. In fact, CSF114(Glc), a structure-based designed glycopeptide, is able to recognize, by ELISA, the presence of specific IgM autoAbs in the sera of a MS patient population but not in blood donors and other autoimmune conditions. AutoAbs specific for CSF114(Glc) isolated from MS patients recognized myelin and oligodendrocyte antigens by immunohistochemistry but not other nonrelevant tissues. We demonstrate that CSF114(Glc) is a reliable, specific probe in a longitudinal study of untreated MS patients. Development of IgG͞IgM anti-CSF114(Glc) Abs paralleled clinical activity and brain lesions positive to MRI. Therefore, a CSF114(Glc)-based immunoassay on sera may have important prognostic value in monitoring MS disease progression guiding optimal therapeutic treatment.aberrant glycosylation ͉ prognostic probe ͉ synthetic antigen ͉ -hairpin
Intramolecular side-chain to side-chain cyclization is an established approach to achieve stabilization of specific conformations and a recognized strategy to improve resistance toward proteolytic degradation. To this end, cyclizations, which are bioisosteric to the lactam-type side-chain to side-chain modification and do not require orthogonal protection schemes, are of great interest. Herein, we report the employment of Cu(I)-catalyzed 1,3-dipolar cycloaddition of side chains modified with azido and alkynyl functions and explore alternative synthetic routes to efficiently generate 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptides. The solid-phase assembly of the linear precursor including epsilon-azido norleucine and the propargylglycine (Pra) in positions i and i+4, respectively, was accomplished by either subjecting the resin-bound peptide to selective on-resin diazo transformation of a Lys into the Nle(epsilon-N3) or the incorporation of Fmoc-Nle(epsilon-N3)-OH during the stepwise build-up of the resin-bound peptide 1b. Solution-phase Cu(I)-catalyzed 1,3-dipolar cycloaddition converts the linear precursor Ac-Lys-Gly-Nle(epsilon-N3)-Ser-Ile-Gln-Pra-Leu-Arg-NH2 (2) into the 1,4-disubstituted [1,2,3]triazolyl-containing cyclopeptide [Ac-Lys-Gly-Xaa(&(1))-Ser-Ile-Gln-Yaa(&(2))-Leu-Arg-NH2][(&(1)(CH2)4-1,4-[1,2,3]triazolyl-CH2&(2))] (3). The conformational preferences of the model cyclopeptide 3 (III), which is derived from the sequence of a highly helical and potent i to i+4 side-chain to side-chain lactam-containing antagonist of parathyroid hormone-related peptide (PTHrP), are compared to the corresponding lactam analogue Ac[Lys(13)(&(1)),Asp(17)(&(2))]hPTHrP(11-19)NH2 (II). CD and NMR studies of 3 and II in water/hexafluoroacetone (HFA) (50:50, v/v) revealed a high prevalence of turn-helical structures involving in particular the cyclic regions of the molecule. Despite a slight difference of the backbone arrangement, the side-chains of Ser, Gln, and Ile located at the i+1 to i+3 of the ring-forming sequences share the same spatial orientation. Both cyclopeptides differ regarding the location of the turn-helical segment, which in II involves noncyclized residues while in 3 it overlaps with residues involved in the cyclic structure. Therefore, the synthetic accessibility and conformational similarity of i to i+4 side-chain to side-chain cyclopeptide containing the 1,4-disubstituted [1,2,3]triazolyl moiety to the lactam-type one may result in similar bioactivities.
Citrullinated H4 from activated neutrophils and NETs is a target of antibodies in RA, and synthetic citrullinated H4-derived peptides are a new substrate for ACPA detection. As NETosis can generate antigens for ACPA, these data suggest a novel connection between innate and adaptive immunity in RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.