Aim To parse out the impact of advanced ageing and disuse on skeletal muscle function, we utilized both in vivo and in vitro techniques to comprehensively assess upper- and lower-limb muscle contractile properties in 8 young (YG; 25±6yrs) and 8 oldest-old mobile (OM; 87±5yrs) and 8 immobile (OI; 88±4yrs) women. Methods In vivo, maximal voluntary contraction (MVC), electrically evoked resting twitch force (RT), and physiological cross sectional area (PCSA) of the quadriceps and elbow flexors was assessed. Muscle biopsies of the vastus lateralis and biceps brachii facilitated the in vitro assessment of single fibre specific tension (Po). Results In vivo, compared to the young, both the OM and OI exhibited a more pronounced loss of MVC in the lower-limb (OM (−60%) and OI (−75%)) than the upper-limb (OM=−51%; OI=−47%). Taking into account the reduction in muscle PCSA (OM=−10%; OI=−18%), only evident in the lower-limb, by calculating voluntary muscle specific force, the lower-limb of the OI (−40%) was more compromised than the OM (−13%). However, in vivo, RT in both upper- and lower-limbs (~9.8 N·m·cm−2) and Po (~123 mN·mm−2), assessed in vitro, implies preserved intrinsic contractile function in all muscles of the oldest-old and were well correlated (r=0.81). Conclusion These findings suggest that in the oldest-old neither advanced ageing nor disuse, per se, impact intrinsic skeletal muscle function, as assessed in vitro. However, in vivo, muscle function is attenuated by age and exacerbated by disuse, implicating factors other than skeletal muscle, such as neuromuscular control, in this diminution of function.
Aim Decreased muscle strength has been frequently observed in individuals with Parkinson's disease (PD). However, this condition is still poorly examined in physically active patients. This study compared quadriceps (Q) maximal force and the contribution of central and peripheral components of force production during a maximal isometric task between physically active PD and healthy individuals. In addition, the correlation between force determinants and energy expenditure indices were investigated. Methods Maximal voluntary contraction (MVC), resting twitch (RT) force, pennation angle (θp), physiological cross‐sectional area (PCSA) and Q volume were assessed in 10 physically active PD and 10 healthy control (CTRL) individuals matched for age, sex and daily energy expenditure (DEE) profile. Results No significant differences were observed between PD and CTRL in MVC (142 ± 85; 142 ± 47 N m), Q volume (1469 ± 379; 1466 ± 522 cm3), PCSA (206 ± 54; 205 ± 71 cm2), θp (14 ± 7; 13 ± 3 rad) and voluntary muscle‐specific torque (MVC/PCSA [67 ± 35; 66 ± 19 N m cm−2]). Daily calories and MVC correlated (r = 0.56, P = .0099). However, PD displayed lower maximal voluntary activation (MVA) (85 ± 7; 95 ± 5%), rate of torque development (RTD) in the 0‐0.05 (110 ± 70; 447 ± 461 N m s−1) and the 0.05‐0.1 s (156 ± 135; 437 ± 371 N m s−1) epochs of MVCs, whereas RT normalized for PCSA was higher (35 ± 14; 20 ± 6 N m cm−2). Conclusion Physically active PDs show a preserved strength of the lower limb. This resulted by increasing skeletal muscle contractility, which counterbalances neuromuscular deterioration, likely due to their moderate level of physical activity.
Previous studies demonstrated that aging, neurodegeneration, and the level of physical activity are associated with vascular alterations. However, in Parkinson's disease (PD) only cerebral vascular function has been investigated; instead, the contribution of PD on systemic vascular function and skeletal muscle circulation remains a matter of debate. In this study, the hyperemic response during the single passive leg movement test (sPLM), largely nitric oxide dependent, was examined at the level of the common femoral artery with an ultrasound Doppler system to assess systemic vascular function in 10 subjects with PD (PDG), compared with 10 aged-sex and physically active matched healthy elderly (EHG), and 10 physically active young healthy individuals (YHG). Interestingly, femoral blood flow at rest, normalized for the thigh volume, was similar in PDG (64±15 mL min-1 L-1), EHG (44±8 mL min-1 L-1) and YHG (58±11 mL min-1 L-1, all p > 0.05). The sPLM-induced hyperemic response appeared markedly lower in PDG and EHG compared to YHG (8.3±0.1 vs 9.8±0.8 vs 17.3±3.0 mL min-1 L-1; p < 0.05) but the difference between PDG and EHG was negligible (p > 0.05). The results of our study indicate that peripheral circulation and vascular function are not reduced in physically active patients with PD, suggesting that these vascular changes could resemble the physiological adjustments of aging, without any impact from the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.