Mandibuloacral dysplasia (MAD) is a rare autosomal recessive disorder, characterized by postnatal growth retardation, craniofacial anomalies, skeletal malformations, and mottled cutaneous pigmentation. The LMNA gene encoding two nuclear envelope proteins (lamins A and C [lamin A/C]) maps to chromosome 1q21 and has been associated with five distinct pathologies, including Dunnigan-type familial partial lipodystrophy, a condition that is characterized by subcutaneous fat loss and is invariably associated with insulin resistance and diabetes. Since patients with MAD frequently have partial lipodystrophy and insulin resistance, we hypothesized that the disease may be caused by mutations in the LMNA gene. We analyzed five consanguineous Italian families and demonstrated linkage of MAD to chromosome 1q21, by use of homozygosity mapping. We then sequenced the LMNA gene and identified a homozygous missense mutation (R527H) that was shared by all affected patients. Patient skin fibroblasts showed nuclei that presented abnormal lamin A/C distribution and a dysmorphic envelope, thus demonstrating the pathogenic effect of the R527H LMNA mutation.
Aims Despite increased recognition as a chronic disease, obesity remains greatly underdiagnosed and undertreated. We aimed to identify international perceptions, attitudes, behaviours and barriers to effective obesity care in people with obesity (PwO) and healthcare professionals (HCPs). Materials and methods An online survey was conducted in 11 countries. Participants were adults with obesity and HCPs who were primarily concerned with direct patient care. Results A total of 14 502 PwO and 2785 HCPs completed the survey. Most PwO (68%) and HCPs (88%) agreed that obesity is a disease. However, 81% of PwO assumed complete responsibility for their own weight loss and only 44% of HCPs agreed that genetics were a barrier. There was a median of three (mean, six) years between the time PwO began struggling with excess weight or obesity and when they first discussed their weight with an HCP. Many PwO were concerned about the impact of excess weight on health (46%) and were motivated to lose weight (48%). Most PwO (68%) would like their HCP to initiate a conversation about weight and only 3% were offended by such a conversation. Among HCPs, belief that patients have little interest in or motivation for weight management may constitute a barrier for weight management conversations. When discussed, HCPs typically recommended lifestyle changes; however, more referrals and follow‐up appointments are required. Conclusions Our international dataset reveals a need to increase understanding of obesity and improve education concerning its physiological basis and clinical management. Realization that PwO are motivated to lose weight offers an opportunity for HCPs to initiate earlier weight management conversations.
Background-Hyperglycemia impairs functional properties of cytosolic and nuclear proteins via O-linked glycosylation modification (O-GlcNAcylation). We studied the effects of O-GlcNAcylation on insulin signaling in human coronary artery endothelial cells. Methods and Results-O-GlcNAcylation impaired the metabolic branch of insulin signaling, ie, insulin receptor (IR) activation of the IR substrate (IRS)/phosphatidylinositol 3-kinase (PI3-K)/Akt, whereas it enhanced the mitogenic branch, ie, ERK-1/2 and p38 (mitogen-activated protein kinase). Both in vivo and in vitro phosphorylation of endothelial nitric oxide synthase (eNOS) by Akt were reduced by hyperglycemia and hexosamine activation. Insulin-induced eNOS activity in vivo was reduced by hyperglycemia and hexosamine activation, which was coupled to increased activation and expression of matrix metalloproteinase-2 and -9; these phenomena were reversed by inhibition of the hexosamine pathway. Finally, carotid plaques from type 2 diabetic patients showed increased endothelial O-GlcNAcylation with respect to nondiabetics. Conclusions-Our
Insulin receptor substrate (IRS) molecules are key mediators in insulin signaling and play a central role in maintaining basic cellular functions such as growth, survival, and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. Results from targeted disruption of the IRS genes in mice have provided important clues to the functional differences among these related molecules, suggesting they play different and specific roles in vivo. The available data are consistent with the notion that IRS-1 and IRS-2 are not functionally interchangeable in tissues that are responsible for glucose production (liver), glucose uptake (skeletal muscle and adipose tissue), and insulin production (pancreatic beta cells). In fact, IRS-1 appears to have its major role in skeletal muscle whereas IRS-2 appears to regulate hepatic insulin action as well as pancreatic beta cell development and survival. By contrast, IRS-3 and IRS-4 genes appear to play a redundant role in the IRS signaling system. Defects in muscle IRS-1 expression and function have been reported in insulin-resistant states such as obesity and type 2 diabetes. Several polymorphisms in the IRS genes have been identified, but only the Gly-->Arg972 substitution of IRS-1, interacting with environmental factors, seems to have a pathogenic role in the development of type 2 diabetes. In contrast, polymorphisms of the other IRS genes do not appear to contribute to type 2 diabetes.
Most patients with non-insulin-dependent diabetes mellitus are resistant to both endogenous and exogenous insulin. Insulin resistance precedes the onset of this disease, suggesting that it may be an initial abnormality. Insulin-receptor kinase activity is impaired in muscle, fibroblasts and other tissues of many patients with non-insulin-dependent diabetes mellitus, but abnormalities in the insulin-receptor gene do not appear to be the cause of this decreased kinase activity. Skin fibroblasts from certain insulin-resistant patients contain an inhibitor of insulin-receptor tyrosine kinase. Here we show that this inhibitor is a membrane glycoprotein, termed PC-1 (refs 10, 11). We find that PC-1 activity is increased in fibroblasts from seven of nine patients with typical non-insulin-dependent diabetes mellitus. In addition, overexpression of PC-1 in transfected cultured cells reduces insulin-stimulated tyrosine kinase activity. These studies raise the possibility that PC-1 has a role in the insulin resistance of non-insulin-dependent diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.