Aʙʀ. -We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized equations exhibit a loss of regularity, our existence result is proved by using a suitable modification of the Nash-Moser iteration scheme. We also show how a similar analysis yields the existence of weakly stable shock waves in isentropic gas dynamics, and the existence of weakly stable liquid/vapor phase transitions.R. -Nous construisons des nappes de tourbillon supersoniques pour les équations d'Euler compressibles isentropiques en deux dimensions d'espace. Il s'agit d'un problème non-linéaire hyperbolique à frontière libre présentant deux difficultés principales : la frontière libre est caractéristique et la condition dite de Lopatinskii n'est satisfaite que dans un sens faible, ce qui induit des estimations à perte. Néanmoins nous montrons l'existence de telles solutions régulières par morceaux des équations d'Euler en utilisant un schéma itératif de type Nash-Moser palliant les pertes de régularité. Notre analyse s'étend au cas de discontinuités non-caractéristiques et faiblement stables comme certaines ondes de choc pour les équations d'Euler ou les transitions de phase liquide-vapeur.
We study the linear stability of compressible vortex sheets in two space dimensions. Under a supersonic condition that precludes violent instabilities, we prove an energy estimate for the linearized boundary value problem. Since the problem is characteristic, the estimate we prove exhibits a loss of control on the trace of the solution. Furthermore, the failure of the uniform Kreiss-Lopatinskii condition yields a loss of derivatives in the energy estimate.
We consider the free-boundary problem for the plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the pre-Maxwell dynamics for the magnetic field. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. The plasmavacuum system is not isolated from the outside world, because of a given surface current on the fixed boundary that forces oscillations.Under a suitable stability condition satisfied at each point of the initial interface, stating that the magnetic fields on either side of the interface are not collinear, we show the existence and uniqueness of the solution to the nonlinear plasma-vacuum interface problem in suitable anisotropic Sobolev spaces. The proof is based on the results proved in the companion paper (Secchi and Trakhinin 2013 Interfaces Free Boundaries 15 323-57), about the well-posedness of the homogeneous linearized problem and the proof of a basic a priori energy estimate. The proof of the resolution of the nonlinear problem given in the present paper follows from the analysis of the elliptic system for the vacuum magnetic field, a suitable tame estimate in Sobolev spaces for the full linearized equations, and a Nash-Moser iteration.
Abstract. We consider the free boundary problem for the plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the pre-Maxwell dynamics for the magnetic field. At the free-interface we assume that the total pressure is continuous and that the magnetic field is tangent to the boundary. The plasma density does not go to zero continuously at the interface, but has a jump, meaning that it is bounded away from zero in the plasma region and it is identically zero in the vacuum region. Under a suitable stability condition satisfied at each point of the plasma-vacuum interface, we prove the well-posedness of the linearized problem in conormal Sobolev spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.