More than 20 years after its approval by the Food and Drug Administration (FDA), liposomal doxorubicin (DOX) is still the drug of choice for the treatment of breast cancer and other conditions such as ovarian cancer and multiple myeloma. Yet, despite the efforts, liposomal DOX did not satisfy expectations at the clinical level. When liposomal drugs enter a physiological environment, their surface gets coated by a dynamic biomolecular corona (BC). The BC changes liposome's synthetic identity, providing it with a new one, referred to as "biological identity" (size, aggregation state, and BC composition). Today, the concept is emerging that specific BCs may determine either success (e.g., stealth effect and accumulation at the target site) or failure (e.g., rapid blood clearance and off-target interactions) of liposomal drugs. To get a comprehensive investigation of liposome synthetic identity, biological identity, and cellular response as a function of human plasma (HP) concentration, here we used a straightforward combination of quantitative analytical and imaging tools, including dynamic light scattering, microelectrophoresis, synchrotron small-angle X-ray scattering, transmission electron microscopy (TEM), fluorescence lifetime imaging microscopy (FLIM), nano-liquid chromatography tandem mass spectrometry/mass spectrometry (nano-LC-MS/MS), confocal microscopy, flow cytometry, and cell viability assays. Doxoves was selected as a reference. Following exposure to HP, Doxoves was surrounded by a complex BC that changed liposome's synthetic identity. Observations made with nano-LC-MS/MS revealed that the BC of Doxoves did not evolve as a function of HP concentration and was poorly enriched of typical "opsonins" (complement proteins, immunoglobulins, etc.). This provides a possible explanation for the prolonged blood circulation of liposomal DOX. On the other hand, flow cytometry showed that protein binding reduced the internalization of DOX in MCF7 and MDA-MB-435S human breast carcinoma. Combining FLIM and TEM experiments, we clarified that reduction in DOX intracellular content was likely due to the frequent rupture of the liposome membrane and consequent leakage of the cargo. In light of reported results, we are prompted to speculate that a detailed understanding of BC formation, composition, and effects on liposome stability and uptake is an indispensable task of future research in the field, especially along the way to clinical translation of liposomal drugs.
The supramolecular organization of Doxorubicin (DOX) within the standard Doxoves® liposomal formulation (DOX®) is investigated using visible light and phasor approach to fluorescence lifetime imaging (phasor-FLIM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.