The capacity of a structure can be assessed using inelastic analysis, requiring sophisticated numerical procedures such as pushover and incremental dynamic analyses. A simplified method for the evaluation of the seismic performance of steel moment resisting frames (MRFs) to be used in everyday practice has been recently proposed. This method evaluates the capacity of buildings employing an analytical trilinear model without resorting to any non−linear analysis. Despite the methodologies suggested by codes, the assessing procedure herein described is of easy application, also by hand calculation. Furthermore, it constitutes a suitable tool to check the capacity of the buildings designed with the new seismic code prescriptions. The proposed methodology has been set up through a large parametric analysis, carried out on 420frames designed according to three different approaches: the theory of plastic mechanism control (TPMC), ensuring the design of structures showing global collapse mechanism (GMRFs), the one based on the Eurocode 8 design requirements (SMRFs), and a simple design against horizontal loads (OMRFs) without specific seismic requirements. In this paper, some examples of the application of this simplified methodology are proposed with references to structures supposed to exhibit global, partial and soft storey mechanism.
Sometimes it is difficult to choose the most appropriate failure criterion for the problem analyzed. For brittle materials, attention must be paid to the availability of experimental data and the calibration of the representative parameters, within the chosen failure criterion. The work herein presented, starting with an overview on machromechanical failure criteria, analysed in the Haigh-Westergaard Stress Space, investigates the suitability of Mohr-Coulomb, Drucker-Prager and Concrete Damaged Plasticity failure criteria of masonry structures, underlining their specific characteristics and implementation in FEM simulations. The Pavia Door Wall experimental campaign under pseudo-static cyclic test is considered as benchmark study. The results of the experimental tests are compared with a FE model developed with ABAQUS computer program considering several failure criteria and equivalent frame approach. Among the investigated failure criteria Concrete Damaged Plasticity is able to capture the actual behaviour of the masonry walls under monotonic excitation. In particular, thanks to the adaptability of the Guo’s model in the definition and calibration of the uniaxial behavior, the model suitability in catching the variation of the cohesion and the evolution of the damage is better in comparison with the other addressed failure criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.