Abstract. Semantic specifications of programming languages typically have poor modularity. This hinders reuse of parts of the semantics of one language when specifying a different language -even when the two languages have many constructs in common -and evolution of a language may require major reformulation of its semantics. Such drawbacks have discouraged language developers from using formal semantics to document their designs. In the PLanCompS project, we have developed a component-based approach to semantics. Here, we explain its modularity aspects, and present an illustrative case study: a component-based semantics for Caml Light. We have tested the correctness of the semantics by running programs on an interpreter generated from the semantics, comparing the output with that produced on the standard implementation of the language. Our approach provides good modularity, facilitates reuse, and should support co-evolution of languages and their formal semantics. It could be particularly useful in connection with domain-specific languages and language-driven software development.
Abstract. Semantic specifications of programming languages typically have poor modularity. This hinders reuse of parts of the semantics of one language when specifying a different language -even when the two languages have many constructs in common -and evolution of a language may require major reformulation of its semantics. Such drawbacks have discouraged language developers from using formal semantics to document their designs. In the PLanCompS project, we have developed a component-based approach to semantics. Here, we explain its modularity aspects, and present an illustrative case study: a component-based semantics for Caml Light. We have tested the correctness of the semantics by running programs on an interpreter generated from the semantics, comparing the output with that produced on the standard implementation of the language. Our approach provides good modularity, facilitates reuse, and should support co-evolution of languages and their formal semantics. It could be particularly useful in connection with domain-specific languages and language-driven software development.
Abstract. Semantic specifications of programming languages typically have poor modularity. This hinders reuse of parts of the semantics of one language when specifying a different language -even when the two languages have many constructs in common -and evolution of a language may require major reformulation of its semantics. Such drawbacks have discouraged language developers from using formal semantics to document their designs. In the PLanCompS project, we have developed a component-based approach to semantics. Here, we explain its modularity aspects, and present an illustrative case study: a component-based semantics for Caml Light. We have tested the correctness of the semantics by running programs on an interpreter generated from the semantics, comparing the output with that produced on the standard implementation of the language. Our approach provides good modularity, facilitates reuse, and should support co-evolution of languages and their formal semantics. It could be particularly useful in connection with domain-specific languages and language-driven software development.
It has been an open question as to whether the Modular Structural Operational Semantics framework can express the dynamic semantics of call/cc. This paper shows that it can, and furthermore, demonstrates that it can express the more general delimited control operators control and shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.