The primary function of a dental implant is to act as an abutment for a prosthetic device, similar to a natural tooth root and crown. Any success criteria, therefore, must include first and foremost support of a functional prosthesis. In addition, although clinical criteria for prosthetic success are beyond the scope of this article, patient satisfaction with the esthetic appearance of the implant restoration is necessary in clinical practice. The restoring dentist designs and fabricates a prosthesis similar to one supported by a tooth, and as such often evaluates and treats the dental implant similarly to a natural tooth. Yet, fundamental differences in the support system between these entities should be recognized. The purpose of this article is to use a few indices developed for natural teeth as an index that is specific for endosteal root-form implants. This article is also intended to update and upgrade what is purported to be implant success, implant survival, and implant failure. The Health Scale presented in this article was developed and accepted by the International Congress of Oral Implantologists Consensus Conference for Implant Success in Pisa, Italy, October 2007.
Results showed that increasing the peak insertion torque reduces the level of implant micromotion. In addition, micromotion in soft bone was found to be consistently high, which could lead to the failure of osseointegration. Thus, immediate functional loading of implants in soft bone should be considered with caution.
Purpose:The aim of this study was to evaluate a new surgical technique for implant site preparation that could allow to enhance bone density, ridge width, and implant secondary stability.Materials and Methods:The edges of the iliac crests of 2 sheep were exposed and ten 3.8 × 10-mm Dynamix implants (Cortex) were inserted in the left sides using the conventional drilling method (control group). Ten 5 × 10-mm Dynamix implants (Cortex) were inserted in the right sides (test group) using the osseodensification procedure (Versah). After 2 months of healing, the sheep were killed, and biomechanical and histological examinations were performed.Results:No implant failures were observed after 2 months of healing. A significant increase of ridge width and bone volume percentage (%BV) (approximately 30% higher) was detected in the test group. Significantly better removal torque values and micromotion under lateral forces (value of actual micromotion) were recorded for the test group in respect with the control group.Conclusion:Osseodensification technique used in the present in vivo study was demonstrated to be able to increase the %BV around dental implants inserted in low-density bone in respect to conventional implant drilling techniques, which may play a role in enhancing implant stability and reduce micromotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.