Theoretical models are developed here for enzymic activity in the presence of direct micellar aggregates. An approach similar to that of Bru et al. [Bru, Sánchez-Ferrer and Garcia-Carmona (1989) Biochem. J. 259, 355-361] for reverse micelles has been adopted. The system is considered to consist of three pseudo-phases: free water, bound water and surfactant tails. The substrate concentration in each pseudo-phase is related to the total substrate concentration in the reaction medium. In the absence of interactions between the enzyme and the micelles, the model predicts either monotonically increasing or monotonically decreasing trends in the calculated reaction rate as a function of surfactant concentration. With enzyme-micelle interactions included in the formulation (by introducing an equilibrium relation between the enzyme confined in the free water and in the bound water pseudo-phases, and by allowing for different catalytic behaviours for the two forms), the calculated reaction rate can exhibit a bell-shaped dependence on surfactant concentration. The effect of the partition of enzyme and substrate is described, as is that of enzyme efficiency in the various pseudo-phases.
Theoretical models are developed here for enzymic activity in the presence of direct micellar aggregates. An approach similar to that of Bru et al. [Bru, Sánchez-Ferrer and Garcia-Carmona (1989) Biochem. J. 259, 355-361] for reverse micelles has been adopted. The system is considered to consist of three pseudo-phases: free water, bound water and surfactant tails. The substrate concentration in each pseudo-phase is related to the total substrate concentration in the reaction medium. In the absence of interactions between the enzyme and the micelles, the model predicts either monotonically increasing or monotonically decreasing trends in the calculated reaction rate as a function of surfactant concentration. With enzyme-micelle interactions included in the formulation (by introducing an equilibrium relation between the enzyme confined in the free water and in the bound water pseudo-phases, and by allowing for different catalytic behaviours for the two forms), the calculated reaction rate can exhibit a bell-shaped dependence on surfactant concentration. The effect of the partition of enzyme and substrate is described, as is that of enzyme efficiency in the various pseudo-phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.